Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

В равнобедренную трапецию KLMN ( LM$ \Vert$KN) вписана окружность, касающася сторон LM и KN в точках P и Q соответственно, KN = 4$ \sqrt{6}$, PQ = 4. Прямая CN пересекает отрезок PQ в точке C, а вписанную окружность — в точках A и B (A между N и C), PC : CQ = 3. Найдите AC.

Вниз   Решение


В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

ВверхВниз   Решение


Решить уравнение 2-log sin x cos x=log cos x sin x.

ВверхВниз   Решение


Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся равны c . Найдите косинус угла между рёбрами, равными a .

ВверхВниз   Решение


Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

ВверхВниз   Решение


Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o . Найдите периметр трапеции.

ВверхВниз   Решение


Дан треугольник ABC и точка P внутри него. A' , B' , C' – проекции P на прямые BC , CA , AB . Докажите, что центр окружности, описанной около треугольника A'B'C' , лежит внутри треугольника ABC .

ВверхВниз   Решение


Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.

ВверхВниз   Решение


Даны две окружности. Первая окружность вписана в треугольник ABC , вторая касается стороны AC и продолжений сторон AB и BC . Известно, что эти окружности касаются друг друга, произведение их радиусов равно 20, а угол BAC равен arccos . Найдите периметр треугольника ABC .

Вверх   Решение

Задача 102274
Темы:    [ Касающиеся окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Даны две окружности. Первая окружность вписана в треугольник ABC , вторая касается стороны AC и продолжений сторон AB и BC . Известно, что эти окружности касаются друг друга, произведение их радиусов равно 20, а угол BAC равен arccos . Найдите периметр треугольника ABC .

Решение

Пусть первая (вписанная) окружность треугольника ABC касается сторон AB и BC соответственно в точках M и P , вторая (вневписанная) окружность касается продолжений сторон AB и BC соответственно в точках N и Q , а K — точка касания окружностей ( K на стороне AC ). По теореме о равенстве отрезков касательных, проведённых к окружности из одной точки,

BN=BQ, BM=BP, MN = PQ, AM=AK=AN=MN,


CP=CK=CQ = PQ,

поэтому AB=BN-AN=BQ-CQ=BC , т.е. треугольник ABC — равнобедренный. Его медиана BK является высотой.
Пусть r и R — радиусы соответственно первой и второй окружностей. Тогда
AC=MN=PQ = 2=2=4, AK=· AC=2.


Из прямоугольного треугольника BAK находим, что
AB= = =3.

Следовательно,
AB+BC+AC=3+3+4=10.


Ответ

10 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3701

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .