ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Решите в целых числах уравнение (x² – y²)² = 1 + 16y.
Определите угол A между сторонами 2 и 4, если медиана, проведённая из
вершины A, равна
а) Наконец, у Снежной Королевы появились все квадраты с целыми сторонами, но каждый в единственном экземпляре. Королева пообещала Каю, что он станет мудрым, если сможет из каких-то имеющихся квадратов сложить прямоугольник. Сможет ли он это сделать?
На сторонах треугольника ABC как на гипотенузах строятся во внешнюю сторону равнобедренные прямоугольные треугольники ABD , BCE и ACF . Докажите, что отрезки DE и BF равны и перпендикулярны.
Две окружности касаются внешним образом. Их радиусы
относятся как 3:1, а длина их общей внешней касательной
равна 6 В выпуклом четырёхугольнике ABCD диагонали AC и BD пересекаются в точке O . Точки K , L , M и N лежат на сторонах AB , BC , CD и AD соответственно, причём точка O лежит на отрезках KM и LN и делит их пополам. Докажите, что ABCD — параллелограмм. Через точку на ребре треугольной пирамиды проведены две плоскости, параллельные двум граням пирамиды. Эти плоскости отсекают две треугольные пирамиды. Разрежьте оставшийся многогранник на две треугольные призмы. На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:
В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC. |
Задача 108092
УсловиеВ треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC. РешениеAI и CI – биссектрисы углов A и C. Пусть прямые AI и CK пересекаются в точке X, а прямые CI и AL – в точке Y. Поскольку треугольник KAC – равнобедренный (AC = AK по условию задачи), то его биссектриса AX является высотой. Значит, AX – высота треугольника AMC. Аналогично CY – высота этого треугольника. Итак, I – точка пересечения высот треугольника AMC. Следовательно, MI ⊥ AC. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке