Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 16 задач
Версия для печати
Убрать все задачи

В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30.

Вниз   Решение


Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2.

ВверхВниз   Решение


Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).

ВверхВниз   Решение


Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

ВверхВниз   Решение


Автор: Астахов В.

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников кликой, если все они дружат между собой. Их число называется размером клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

ВверхВниз   Решение


Али-Баба и разбойник делят клад, состоящий из 100 золотых монет, разложенных в 10 кучек по 10 монет. Али-Баба выбирает 4 кучки, ставит около каждой из них по кружке, откладывает в каждую кружку по несколько монет (не менее одной, но не всю кучку). Разбойник должен как-то переставить кружки, изменив их первоначальное расположение, после чего монеты высыпаются из кружек в те кучки, около которых оказались кружки. Далее Али-Баба снова выбирает 4 кучки из 10, ставит около них кружки, и т. д. В любой момент Али-Баба может уйти, унеся с собой любые три кучки по выбору. Остальные монеты достаются разбойнику. Какое наибольшее число монет сможет унести Али-Баба, если разбойник тоже старается получить побольше монет?

ВверхВниз   Решение


Функции  f(x) и g(x) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через m число пар  (x, y),  для которых
f(x) = g(y),  через n – число пар, для которых  f(x) = f(y),  а через k – число пар, для которых g(x) = g(y).  Докажите, что  2m ≤ n + k.

ВверхВниз   Решение


Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)?

Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.

ВверхВниз   Решение


Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник?

ВверхВниз   Решение


Сложите из фигур, изображённых на рисунке, квадрат размером 9×9 с вырезанным в его центре квадратом 3×3.

(Фигуры можно не только поворачивать, но и переворачивать.)

ВверхВниз   Решение


Волшебным считается момент, в который число минут на электронных часах совпадает с числом часов. Чтобы сварить волшебное зелье, его надо и поставить на огонь, и снять с огня в волшебные моменты. А чтобы оно получилось вкусным, его надо варить от 1,5 до 2 часов. Сколько времени варится вкусное волшебное зелье?

ВверхВниз   Решение


Существует ли выпуклое тело, отличное от шара, ортогональные проекции которого на некоторые три попарно перпендикулярные плоскости являются кругами?

ВверхВниз   Решение


Автор: Шноль Д.Э.

На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед.
И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?

ВверхВниз   Решение


Каждую вершину выпуклого четырехугольника площади S отразили симметрично относительно диагонали, не содержащей эту вершину. Обозначим площадь получившегося четырехугольника через S' . Докажите, что <3 .

ВверхВниз   Решение


Точки A и B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах AB.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный.

Вверх   Решение

Задача 108248
Темы:    [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 5-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный.


Решение

  Обозначим через O точку пересечения перпендикуляров. опущенных из точки K на AB, из L на BC, из M на CD. Обозначим также  ∠BAK = ∠DAN = α,
CBL = ∠ABK = β,  ∠DCM = ∠BCL = γ,  ∠ADN = ∠CDM = δ.
  Тогда  2(α + β + γ + δ) = 360°  как сумма внешних углов четырёхугольника ABCD. Из треугольников AKB и CMD находим, что
AKB + ∠CMD = (180° – α – β) + (180° – γ – δ) = 360° – (α + β + γ + δ) = 180°.

  Значит, четырёхугольник KLMN – вписанный. По условию  LOBC  и  OMCD,  поэтому  ∠CLO = ∠CMO = 90° – γ.
  Значит, треугольник OLM – равнобедренный,  LO = OM. Аналогично,  LO = OK.  Следовательно, O – центр описанной окружности четырёхугольника KLMN. Поскольку LOM и LOK – центральные углы этой окружности, а LNM и LNK – вписанные, то  ∠LNM = ½ ∠LOM = ½ (180° – 2(90° – γ)) = γ,
LNK = ½ ∠LOK = ½ (180° – 2(90° – β)) = β.
  Пусть прямые AB и CD пересекаются в точке X (для определённости будем считать, что X лежит на луче BA). Поскольку L – точка пересечения биссектрис внешних углов при вершинах B и C треугольника BXC, то она лежит на биссектрисе внутреннего угла при вершине X этого треугольника. Аналогично, точка N лежит на той же биссектрисе. Таким образом, прямая LN содержит биссектрису угла, образованного прямыми AB и CD, либо параллельна AB и CD, если  AB || CD.  В любом случае, прямая LN образует равные углы с AB и CD.
  Рассмотрим случай пересечения прямых AB и CD. Поскольку LNM и LNK – внешние углы треугольников DXN и AXN, а по доказанному  ∠DXN = ∠AXN,  то  ∠LNM – ∠CDM = ∠LNK – ∠BAK,  или  γ – δ = β – α.  Значит,  α + γ = β + δ = 90°,  а
BAD + ∠BCD = (180° – 2α) + (180° – 2γ) = 360° – 2(α + γ) = 360° – 2·90° = 180°.
  Следовательно, ABCD – вписанный четырёхугольник.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6595
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2000
Этап
Вариант 4
Класс
Класс 10
задача
Номер 00.4.10.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .