Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника m×n числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.

Вниз   Решение


Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

ВверхВниз   Решение


Али-Баба стоит с большим мешком монет в углу пустой прямоугольной пещеры размером m×n клеток, раскрашенных в шахматном порядке. Из любой клетки он может сделать шаг в любую из четырёх соседних клеток (вверх, вниз, вправо или влево). При этом он должен либо положить одну монету в этой клетке, либо забрать из неё одну монету, если, конечно, она не пуста. Может ли после прогулки Али-Бабы по пещере оказаться, что на чёрных клетках лежит ровно по одной монете, а на белых монет нет?

ВверхВниз   Решение


В квадрате 6×6 отмечают несколько клеток так, что из любой отмеченной можно пройти в любую другую отмеченную, переходя только через общие стороны отмеченных клеток. Отмеченную клетку называют концевой, если она граничит по стороне ровно с одной отмеченной. Отметьте несколько клеток так, чтобы получилось   а) 10,  б) 11,  в) 12 концевых клеток.

ВверхВниз   Решение


На отрезке  [0, 1]  отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.

ВверхВниз   Решение


Точка O лежит внутри ромба ABCD . Угол DAB равен 110o . Углы AOD и BOC равны 80o и 100o соответственно. Чему может быть равен угол AOB ?

ВверхВниз   Решение


Автор: Шень А.Х.

В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок).

Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.

ВверхВниз   Решение


Гулливер попал в страну лилипутов, имея 7000000 рублей. На все деньги он сразу купил кефир в бутылках по цене 7 рублей за бутылку (пустая бутылка стоила в то время 1 рубль). Выпив весь кефир, он сдал бутылки и на все вырученные деньги сразу купил кефир. При этом он заметил, что и стоимость кефира, и стоимость пустой бутылки выросли в два раза. Затем он снова выпил весь кефир, сдал бутылки, на все вырученные деньги снова купил кефир и т. д. При этом между каждыми двумя посещениями магазина и стоимость кефира, и стоимость пустой бутылки возрастали в два раза. Сколько бутылок кефира выпил Гулливер?

ВверхВниз   Решение


Автор: Храбров А.

Выпуклый многоугольник M переходит в себя при повороте на угол 90o . Докажите, что найдутся два круга с отношением радиусов, равным , один из которых содержит M , а другой содержится в M .

Вверх   Решение

Задача 109654
Темы:    [ Поворот на $90^\circ$ ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Храбров А.

Выпуклый многоугольник M переходит в себя при повороте на угол 90o . Докажите, что найдутся два круга с отношением радиусов, равным , один из которых содержит M , а другой содержится в M .

Решение

Пусть O – центр поворота, R – наибольшее из расстояний от точки O до вершин многоугольника, A1 – одна из вершин, такая, что OA1=R . Если A1 переходит при повороте в вершину A2 , A2 – в A3 , A3 – в A4 , то, очевидно, A1A2A3A4 – квадрат с центром в точке O ; этот квадрат, очекидно, лежит в M . Отношение радиусов его вписанного и описанного кругов равно , при этом первый лежит в M , а второй содержит M по определению R , что и требовалось.
Справедливо следующее утверждение: если выпуклый многоугольник M переходит в себя при повороте на угол α ( α<180o ), то найдутся два круга с отношением радиусов, равным 2, один из которых содержит M , а другой содержится в M . Попробуйте доказать его самостоятельно.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1997
Этап
Вариант 5
Класс
Класс 9
задача
Номер 97.5.9.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .