ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из точки A проведены к окружности две касательные (M и N – точки касания) и секущая, пересекающая эту окружность в точках B и C, а хорду MN – в точке P, AB : BC = 2 : 3. Найдите AP : PC. Основание прямой призмы KLMNK1L1M1N1 – ромб KLMN с углом 60o при вершине K . Точки E и F – середины рёбер LL1 и LM призмы. Ребро SA правильной четырёхугольной пирамиды SABCD ( S – вершина) лежит на прямой LN , вершины D и B – на прямых MM1 и EF соответственно. Найдите отношение объёмов призмы и пирамиды, если SA=2AB . Высота конуса с вершиной O равна 4, образующая конуса равна 5. Пирамида ABCD вписана в конус так, что точки A и C принадлежат окружности основания, точки B и D принадлежат боковой поверхности, причём точка B принадлежит образующей OA . Треугольники OAC и OBD – равносторонние, причём OB=3 . Найдите объём пирамиды, двугранный угол при ребре AB и радиус сферы, описанной около пирамиды ABCD .
В основании четырёхугольной пирамиды SABCD лежит ромб
ABCD с острым углом при вершине A . Высота ромба равна 4, точка
пересечения его диагоналей является ортогональной проекцией вершины
S на плоскость основания. Сфера радиуса 2 касается плоскостей всех
граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы
до прямой AC равно Известно, что точка, симметричная центру вписанной окружности треугольника ABC относительно стороны BC , лежит на описанной окружности этого треугольника. Найдите угол A .
Сторона основания ABC правильной треугольной пирамиды
ABCD равна 6, угол между боковым ребром и
плоскостью основания пирамиды равен arccos
Сторона основания ABC правильной треугольной пирамиды
ABCD равна 3, двугранный угол между боковой гранью
и плоскостью основания пирамиды равен arccos
Основание прямой призмы PQRP1Q1R1 – треугольник
PQR , в котором Точка M взята на стороне AC равностороннего треугольника ABC, а на продолжении стороны BC за точку C отмечена точка N, причём BM = MN. В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000. Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA. |
Задача 111206
УсловиеЧерез середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA. Решение Пусть O – центр основания ABC, N, E, M – середины рёбер AB, BC, AC соответственно, K – точка пересечения плоскости α с ребром AS. По условию задачи обе плоскости сечения проходят через прямую MN, значит, сечения симметричны относительно плоскости ASE. Следовательно, сечение пирамиды плоскостью β – равнобедреная трапеция MPQN (P и Q – точки пересечения этой плоскости с боковыми рёбрами CS и BS). Пусть L и T – середины оснований MN и PQ этой трапеции. Ответ3/8, 54/49. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке