ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Проведена окружность S с центром в вершине C равнобедренного треугольника ABC ( AC=BC ). Радиус окружности меньше AC . Найдите на этой окружности такую точку P , чтобы касательная к окружности, проведённая в этой точке, делила пополам угол APB . В треугольник ABC со сторонами AB = 6, BC = 5, AC = 7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.
В трапеции ABCD с меньшим основанием BC и
площадью, равной 4, прямые BC и AD касаются
окружности диаметром 2 в точках B и D
соответственно. Боковые стороны трапеции AB и
CD пересекают окружность в точках M и N
соответственно. Длина MN равна
Пятиугольник ABCDE вписан в окружность. Найдите её длину, если
BC = CE, площадь треугольника ADE равна площади треугольника CDE,
площадь треугольника ABC равна площади треугольника BCD, а
3AC + 2BD = 5 В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
В трапеции ABCD с большим основанием BC и
площадью, равной 4 Докажите, что площадь правильного двенадцатиугольника, вписанного в окружность радиуса 1, равна 3. В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой. Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении? На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что BP = CQ.
В равнобедренном треугольнике ABC (AB = BC) медианы AM и CN пересекаются в точке D под прямым углом. Найдите все углы треугольника ABC и площадь четырёхугольника NBMD, если основание AC = 1.
В параллелепипеде ABCDA1B1C1D1 грань ABCD – квадрат со стороной 5, ребро AA1 также равно 5, и это ребро образует с рёбрами AB и AD углы 60o . Найдите диагональ BD1 . В выпуклом пятиугольнике ABCDE диагонали BE и CE являются биссектрисами углов при вершинах B и C соответственно, ∠A = 35°, ∠D = 145°, а площадь треугольника BCE равна 11. Найдите площадь пятиугольника ABCDE. ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость? Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет. В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC. |
Задача 111677
УсловиеВ равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC. Решение Пусть углы при основании BE равнобедренного треугольника
ABE равны α, а углы при основании BD равнобедренного
треугольника BCD равны β. Из условия следует, что α + β = ∠DBE. Значит, Ответ60°. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке