Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD.

Вниз   Решение


Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

ВверхВниз   Решение


Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.

ВверхВниз   Решение


Рассматриваются такие квадратичные функции  f(x) = ax² + bx + c,  что  a < b  и  f(x) ≥ 0  для всех x.
Какое наименьшее значение может принимать выражение  a+b+c/b–a ?

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


В равнобочной трапеции ABCD угол при основании AD равен arcsin . Окружность радиуса R касается основания AD , боковой стороны AB и проходит через вершину C . Она отсекает на сторонах BC и CD отрезки MC и NC соответственно. Найдите BM .

ВверхВниз   Решение


Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

ВверхВниз   Решение


Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

ВверхВниз   Решение


В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.

ВверхВниз   Решение


Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

ВверхВниз   Решение


В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

ВверхВниз   Решение


Из точки D окружности S опущен перпендикуляр DC на диаметр AB . Окружность S1 касается отрезка CA в точке E , а также отрезка CD и окружности S . Докажите, что DE — биссектриса треугольника ADC .

ВверхВниз   Решение


Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N . Докажите, что а) прямая MN проходит через середину P второй дуги; б) длина касательной PQ к окружности S1 равна PA .

Вверх   Решение

Задача 111699
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N . Докажите, что а) прямая MN проходит через середину P второй дуги; б) длина касательной PQ к окружности S1 равна PA .

Решение

а) Пусть O и O1 — центры окружностей S и S1 соответственно. Поскольку OP=ON и O1M = O1N (радиусы одной окружности), треугольники OPN и O1MN — равнобедренные, причём OPN — их общий угол при основаниях. Следовательно, точки N , M и P лежат на одной прямой. Другой способ. Расмотрим гомотетию с центром в точке N касания окружностей, переводящую окружность S1 в окружность S . Касательная AB к окружности S1 перейдёт в параллельную ей касательную l к окружности S , касательная, параллельная хорде AB , делит дугу AB пополам. Тогда точка M перейдёт в середину P дуги AB , не содержащей точку N . Следовательно, прямая MN проходит через середину P этой дуги. б) Продолжим радиус OP окружности S до пересечения с хордой AB в точке K . Тогда K — середина хорды AB . Применив теорему о касательной и секущей, теорему о произведении отрезков пересекающихся хорд и теорему Пифагора, получим, что

PQ2 = PM· PN = PM(PM+MN)= PM2+PM· MN =


=(PK2+KM2) + AM· MB = (PK2+KM2) + (AK+KM)(BK-KM)=


=(PK2+KM2) + (AK+KM)(AK-KM)= (PK2+KM2) + (AK2-KM2)=


=PK2+AK2 = AP2.

Следовательно, PQ=AP . Другой способ. Продолжим PO до пересечения с окружностью S в точке L . Прямоугольные треугольники PKM и PNL подобны, поэтому = , откуда PM· PN = PK· PL . Кроме того AK — высота прямоугольного треугольника APL , проведённая из вершины прямого угла PAL . Следовательно,
PQ2 = PM· PN = PK· PL = PA2.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2893

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .