Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 16 задач
Версия для печати
Убрать все задачи

В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).

Вниз   Решение


Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету? Решите ту же задачу в случаях, когда имеется 4 монеты и 9 монет.

ВверхВниз   Решение


Автор: Ивлев Ф.

Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются.

ВверхВниз   Решение


Точки A и B лежат в плоскости α , M – такая точка в пространстве, для которой AM = 2 , BM = 5 и ортогональная проекция на плоскость α отрезка BM в три раза больше ортогональной проекции на эту плоскость отрезка AM . Найдите расстояние от точки M до плоскости α .

ВверхВниз   Решение


На рисунке изображен график функции  y = x² + ax + b.  Известно, что прямая AB перпендикулярна прямой  y = x.
Найдите длину отрезка OC.

ВверхВниз   Решение


На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

ВверхВниз   Решение


Целые числа a, b и c таковы, что числа  a/b + b/c + c/a  и  a/с + с/b + b/a  тоже целые. Докажите, что  |a| = |b| = |c|.

ВверхВниз   Решение


У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?

ВверхВниз   Решение


В равнобедренный треугольник ABC  (AB = BC)  вписана окружность с центром O, которая касается стороны AB в точке E. На продолжении стороны AC за точку A выбрана точка D так, что  AD = ½ AC. Докажите, что прямые DE и AO параллельны.

ВверхВниз   Решение


Автор: Ивлев Ф.

В остроугольном треугольнике ABC на высоте BH выбрана произвольная точка P. Точки A' и C' – середины сторон BC и AB соответственно. Перпендикуляр, опущенный из A' на CP, пересекается с перпендикуляром, опущенным из C' на AP, в точке K. Докажите, что точка K равноудалена от точек A и C.

ВверхВниз   Решение


Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k.

ВверхВниз   Решение


Задано несколько красных и несколько синих точек. Некоторые из них соединены отрезками. Назовём точку «особой», если более половины из соединённых с ней точек имеют цвет, отличный от её цвета. Если есть хотя бы одна особая точка, то выбираем любую особую точку и перекрашиваем в другой цвет. Докажите, что через конечное число шагов не останется ни одной особой точки.

ВверхВниз   Решение


Функция  f каждому вектору v (с общим началом в точке O) пространства ставит в соответствие число  f(v), причём для любых векторов u, v и любых чисел α, β значение  fu + βv)  не превосходит хотя бы одного из чисел  f(u) или  f(v). Какое наибольшее количество значений может принимать такая функция?

ВверхВниз   Решение


Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.

ВверхВниз   Решение


На стороне AB треугольника ABC взята такая точка P, что  AP = 2PB,  а на стороне AC – ее середина, точка Q. Известно, что  CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


Автор: Карасев Р.

На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.

Вверх   Решение

Задача 111876
Темы:    [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Разбиения на пары и группы; биекции ]
Сложность: 6-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Автор: Карасев Р.

На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.

Решение

Лемма. Пусть в семействе прямоугольников любые два можно пересечь вертикальной прямой. Тогда их все можно пересечь вертикальной прямой.

Доказательство. Рассмотрим прямоугольник с самой левой правой границей и прямоугольник с самой правой левой границей. По условию их можно пересечь прямой. Тогда у любого из оставшихся прямоугольников левая граница будет левее этой прямой, а правая – правее, то есть прямая пересечет все прямоугольники. Лемма доказана.

Перейдем к решению задачи. Предположим противное. Назовем два прямоугольника разделенными, если их нельзя пересечь вертикальной прямой. Рассмотрим все пары разделенных прямоугольников. В каждой паре рассмотрим прямую, на которой лежит самая нижняя из их горизонтальных сторон; пусть h – самая высокая из этих прямых. Возможны два случая.
1. Пусть не существует пары разделенных прямоугольников, лежащих ниже h . Проведем прямую h и рассмотрим все прямоугольники, не пересеченные ею. Если среди них нет пары разделенных, то по лемме их можно пересечь вертикальной прямой, и утверждение задачи доказано. Пусть такая пара прямоугольников (A,B) нашлась (см. рис.) . Тогда по предположению один из них (скажем, A ) лежит выше h . Из выбора h теперь следует, что нижняя сторона прямоугольника B лежит ниже h , а значит, и весь он лежит ниже h . Значит, эти прямоугольники нельзя пересечь ни вертикальной, ни горизонтальной прямой – противоречие.





2. Пусть существует пара (C,D) разделенных прямоугольников, лежащих ниже h . По выбору h , существуют также два разделенных прямоугольника A и B , лежащие не ниже h . Будем считать, что прямоугольник A лежит левее, чем B , а прямоугольник C – левее, чем D . Пусть для определенности правая сторона A находится не правее, чем правая сторона C (см. рис.) . Тогда прямоугольники A и D также разделены, при этом один из них лежит не ниже h , а другой – ниже h . Значит, эти два прямоугольника нельзя пересечь ни вертикальной, ни горизонтальной прямой. Противоречие.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2008
Этап
Вариант 5
Класс
Класс 10
задача
Номер 08.5.10.8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .