ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника
продолжены до пересечения с продолжениями сторон. Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв. Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников. Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов. Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла. В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника. В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что ∠AC'B' = ∠B'A'C, ∠CB'A' = ∠A'C'B, ∠BA'C' = ∠C'B'A. Докажите, что точки A', B', C' – середины сторон треугольника ABC. В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов. Существуют ли такие две функции f и g, принимающие только целые значения, что для любого целого x выполнены соотношения: D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC. На длинной скамейке сидели мальчик и девочка. Затем по одному пришли ещё 20 детей, и каждый садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. В итоге оказалось, что мальчики и девочки на скамейке чередуются. Можно ли наверняка сказать, сколько отважных среди детей на скамейке? Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны. Из центра O правильного n-угольника A1A2...An проведены n векторов в его вершины. Даны такие числа a1, a2, ..., an, что Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность. Треугольник ABC вписан в окружность. Точка A1 диаметрально противоположна точке A, точка A0 – середина стороны BC, точка A2 симметрична точке A1 относительно точки A0. Точки B2 и C2 определяются аналогично. Докажите, что точки A2, B2 и C2 совпадают. Угол при вершине A равнобедренного треугольника ABC (AB = AC) равен 20°. На стороне AB отложим отрезок AD, равный BC. Найдите угол BCD. На бесцветной плоскости покрасили три произвольные точки: одну – в красный цвет, другую – в синий, третью –` в жёлтый. Каждым ходом выбирают на плоскости любые две точки двух из этих цветов и окрашивают еще одну точку в оставшийся цвет так, чтобы эти три точки образовали равносторонний треугольник, в котором цвета вершин идут в порядке "красный, синий, жёлтый" (по часовой стрелке). При этом разрешается красить и уже окрашенную точку плоскости (считаем, что точка может иметь одновременно несколько цветов). Докажите, что сколько бы ходов ни было сделано, все точки одного цвета будут лежать на одной прямой. |
Задача 115985
УсловиеНа бесцветной плоскости покрасили три произвольные точки: одну – в красный цвет, другую – в синий, третью –` в жёлтый. Каждым ходом выбирают на плоскости любые две точки двух из этих цветов и окрашивают еще одну точку в оставшийся цвет так, чтобы эти три точки образовали равносторонний треугольник, в котором цвета вершин идут в порядке "красный, синий, жёлтый" (по часовой стрелке). При этом разрешается красить и уже окрашенную точку плоскости (считаем, что точка может иметь одновременно несколько цветов). Докажите, что сколько бы ходов ни было сделано, все точки одного цвета будут лежать на одной прямой. РешениеСлово "поворот" везде означает "поворот на 60° по часовой стрелке". Обозначим данные точки К, С и G. Построим точку К' по точкам С и G, и точку С' по G и К. Тогда при повороте вокруг G отрезок К'K переходит в СС'. (Если хоть один из этих отрезков вырождается в точку, то КСG – правильный треугольник и его вершины указаны по часовой стрелке, тогда новых точек вообще не появляется.) Итак, прямая КК' переходит в СС' при повороте вокруг их общей точки О. Назовём первую прямую красной, вторую – синей, а прямую, которая получается поворотом синей вокруг О, – жёлтой. Заметим, что при повороте вокруг любой точки K1 на красной прямой синяя прямая переходит в жёлтую, так как расстояния от К1 до них одинаковые. Поэтому при построении точки G1 по произвольной точке С1, лежащей на синей прямой, и точке К1 мы попадаем на жёлтую прямую. Поскольку G получается из C поворотом вокруг К', то и G лежит на жёлтой прямой. Аналогично доказывается, что и для других пар цветов вновь окрашиваемая точка лежит на прямой своего цвета. Замечания7 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке