Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника равна произведению трёх его сторон, делённому на учетверённый радиус окружности, описанной около треугольника, т.е.

S$\scriptstyle \Delta$ = $\displaystyle {\frac{abc}{4R}}$,

где a, b, c — стороны треугольника, R — радиус его описанной окружности.

Вниз   Решение


Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

ВверхВниз   Решение


Автор: Фольклор

Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM.

ВверхВниз   Решение


Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

ВверхВниз   Решение


Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум данным сторонам, если известно, что медианы, проведённые к этим сторонам, пересекаются под прямым углом.

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Докажите, что если (x+)(y+)=1 , то x+y=0 .

ВверхВниз   Решение


Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a рационально.

ВверхВниз   Решение


Автор: Фомин А.

Дан набор, состоящий из таких 1997 чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе равно 0.

ВверхВниз   Решение


Большой треугольник разбит тремя жирными отрезками на четыре треугольника и три четырёхугольника. Сумма периметров четырёхугольников равна 25 см. Сумма периметров четырёх треугольников равна 20 см. Периметр исходного большого треугольника равен 19 см. Найдите сумму длин жирных отрезков.

ВверхВниз   Решение


В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.

ВверхВниз   Решение


Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF, P – точка пересечения отрезков AM и BN. Докажите, что  SABP = SMDNP.

ВверхВниз   Решение


Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?

Вверх   Решение

Задача 116942
Темы:    [ Теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?


Решение

  Предположим, что искомое разбиение существует. Назовём множество Ak большим, если оно содержит больше одного элемента.   Предположим, что число больших множеств конечно. Тогда найдётся такой номер  t > 1,  что каждое из множеств  At, At+1, At+2, ...  состоит из одного элемента. Итак, объединение множеств  At, At+1, At+2, ...  есть множество  {t + 2013, t + 2014, ...}.  Значит, объединение множеств  A1, A2, ..., At–1  совпадает с множеством  {1, 2, ..., t + 2012}.  Но сумма элементов в этих множествах равна  2014 + 2015 + ... + (t + 2012),  что меньше суммы элементов множества  {1, 2, ..., t + 2012}.  Противоречие. Следовательно, больших множеств бесконечно много.
  Сумма чисел каждого из множеств  A1, A2, ..., An  не превосходит  n + 2013,  значит, все их элементы лежат в множестве  {1, 2, ..., n + 2013}.  С другой стороны, так как имеется бесконечно много больших множеств, то найдётся такой номер n, что среди множеств  A1, A2, ..., An  хотя бы 2014 больших. Тогда объединение всех множеств  A1, A2, ..., An  содержит не менее  n + 2014  элементов. Противоречие.


Ответ

Нельзя.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2012-2013
этап
1
Вариант 3
класс
Класс 10
Задача
Номер 10.4
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2012-2013
этап
1
Вариант 3
класс
Класс 11
Задача
Номер 11.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .