Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.

Вниз   Решение


Даны 4 точки: A, B, C, D. Найти такую точку O, что сумма расстояний от неё до данных точек минимальна.

ВверхВниз   Решение


В описанном четырёхугольнике ABCD  AB = CD ≠ BC.  Диагонали четырёхугольника пересекаются в точке L. Докажите, что угол ALB острый.

ВверхВниз   Решение


Постройте правильный десятиугольник.

ВверхВниз   Решение


Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что  1/AE2 + 1/AF2 = 1/AB2.

ВверхВниз   Решение


Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

ВверхВниз   Решение


а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.

ВверхВниз   Решение


11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


Докажите неравенство:  2n > n.

ВверхВниз   Решение


При каких n многочлен  (x + 1)n + xn + 1  делится на:
  а)  x² + x + 1;    б)  (x² + x + 1)²;    в)   (x² + x + 1)³?

ВверхВниз   Решение


Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

Вверх   Решение

Задача 30667
Тема:    [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.


Решение

  Если  n = pq  (p, q > 1),  то  1/n = 1/n–11/n(n–1)  и  1/n = 1/p(q–1)1/pq(q–1).
  Если же n – простое, то  n(y – x) = xy,  и значит, xy делится на n. Поскольку  x < ny делится на n:  y = kn.  Тогда  x = kn/k+1,  откуда  k = n – 1,  то есть имеется ровно одно решение:  (n – 1, n(n – 1)).

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 10
Название Делимость-2
Тема Теория чисел. Делимость
задача
Номер 081
web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .