ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что ∠MBK = 90°. Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
С помощью циркуля и линейки на данной прямой MN постройте точку, из которой данный отрезок AB был бы виден под данным углом.
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?
На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.
В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?
Докажите, что
a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей. Какие-то две команды набрали в круговом волейбольном турнире одинаковое число очков. Даны m = 2n + 1 точек — середины сторон m-угольника.
Постройте его вершины.
Докажите, что в трёхзначном числе, кратном 37, всегда можно переставить цифры так, что новое число также будет кратно 37.
Докажите, что две различные окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.
Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой. Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что $CK = AB = BC$ и ∠ KAC = 30°. Найдите угол $AKB$. В классе 20 учеников, причём каждый дружит не менее, чем с 14 другими. |
Задача 35734
УсловиеВ классе 20 учеников, причём каждый дружит не менее, чем с 14 другими. ПодсказкаУ одного из учеников 14 друзей. Достаточно выбрать из них трёх попарно знакомых. РешениеСоберём весь класс в одной комнате. Рассмотрим некоторого человека А. Пусть теперь из комнаты выйдут все ученики, которые не дружат с А. По условию таких не более пяти. Поэтому в комнате осталось по крайней мере 15 учеников. Выберем из оставшихся в комнате ученика B, отличного от А. Пусть из комнаты выйдут все ученики, которые не дружат с B. После этого в комнате осталось не меньше 10 учеников. Наконец, выберем из оставшихся в комнате ученика C, отличного от А и от B. Пусть из комнаты выйдут все ученики, которые не дружат с C. После этого в комнате осталось не меньше пяти учеников. Эти пять учеников – это А, B, C и еще два ученика D и E, которые дружат с А, B, C. Искомая четвёрка учеников – это, например, А, B, C, D. ОтветМожно. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке