Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Внутри треугольника ABC взята такая точка O, что  ∠ABO = ∠CAO,  ∠BAO = ∠BCO,  ∠BOC = 90°.  Найдите отношение  AC : OC.

Вниз   Решение


Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

ВверхВниз   Решение


Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.
Когда она доползет до цели, если стартовала улитка утром в понедельник?

ВверхВниз   Решение


Остроугольный треугольник ABC  (AB < AC)  вписан в окружность Ω. Пусть M – точка пересечения его медиан, а AH – высота. Луч MH пересекает Ω в точке A'. Докажите, что описанная окружность треугольника A'HB касается прямой AB.

ВверхВниз   Решение


Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Автор: Ивлев Б.М.

Для любого натурального числа n существует составленное из цифр 1 и 2 число, делящееся на 2n. Докажите это.
(Например, на 2 делится 2, на 4 делится 12, на 8 делится 112, на 16 делится 2112...)

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности.
Докажите, что три окружности с центрами A, B, C, проходящие через H, имеют общую касательную.

ВверхВниз   Решение


Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.

ВверхВниз   Решение


Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:

$\,$5 $\,$6 $\,$7 $\,$8 $\,$9 10 11 12 13 14 15 16 17 18 19 20 21 22
8,1 $\,$8 $\,$7 8,1 $\,$9 $\,$8 8,1 7,2 $\,$7 $\,$8 $\,$9 8,1 $\,$9 $\,$8 $\,$9 8,2 $\,$7 7,1

Марина хочет ежедневно съедать по одному банану. Она любит только зелёные бананы, поэтому согласна съесть банан только в течение 4 дней после покупки. Например, банан, купленный 5 октября, Марина согласна съесть 5, 6, 7 или 8 октября. Марина может запасаться бананами, когда они подешевле.

В какие дни по сколько бананов надо покупать Марине, чтобы потратить как можно меньше денег?

ВверхВниз   Решение


Автор: Ильясов С.

В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.

ВверхВниз   Решение


Автор: Золотых А.

Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.

Вверх   Решение

Задача 55125
Темы:    [ Две пары подобных треугольников ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Автор: Золотых А.

Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.


Подсказка

Вершины указанного шестиугольника делят стороны каждого из полученных треугольников на три равные части.


Решение

  Пусть ABC – данный треугольник. Обозначим указанные точки деления, как показано на рисунке. Тогда  SA1B1C1 = 1/3 S.
  Пусть F – точка пересечения прямых C2A2 и AC, MNKLPQ – шестиугольник, о котором говорится в условии. Из равенства треугольников FA2C и C2A2A1 следует, что  CF = C2A1 = 1/3 AC.
  Из подобия треугольников A1NC2 и B1NF находим, что  A1N : NB1 = C2A1 : B1F = 1 : 2.  Аналогично  A1M : MC1 = 1 : 2.  Поэтому  SA1MN = 1/9 SA1B1C1 = S/27.
  Аналогично  SB1KL = SC1PQ = S/27.  Следовательно,  SMNKLPQ = S/3 – 3·S/27 = 2S/9.


Ответ

2S/9.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3200

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .