ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что числа 1, 2, ..., n ни при каком n > 1 нельзя разбить на два множества так, чтобы произведение чисел одного из них равнялось произведению чисел другого. Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа, 1 < m < n < 1986, не является целым числом.
Геометрической интерпретацией итерационного процесса служит итерационная ломаная. Для ее построения на плоскости Oxy
рисуется график функции f(x) и проводится биссектриса
координатного угла — прямая y=x. Затем на графике функции
отмечаются точки A0(x0,f(x0)),
A1(x1,f(x1)),...,
An(xn,f(xn)),... а на биссектрисе координатного угла —
точки
B0(x0,x0),
B1(x1,x1),...,
Bn(xn,xn),...
Ломаная B0A0B1A1...
BnAn... называется итерационной.
Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно выбрать два числа, не являющихся взаимно простыми. Зафиксируем числа a0 и a1. Построим последовательность {an} в которой
an + 1 = Выразите an
через a0, a1 и n.
Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его. Докажите, что если Pn/Qn (n ≥ 1) – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств В стране несколько городов (больше одного); некоторые пары городов соединены дорогами. Известно, что из каждого города можно попасть в любой другой, проезжая по нескольким дорогам. Кроме того, дороги не образуют циклов, то есть если выйти из некоторого города по какой-то дороге и далее двигаться так, чтобы не проходить по одной дороге дважды, то невозможно возвратиться в начальный город. Докажите, что в этой стране найдутся хотя бы два города, каждый из которых соединен дорогой ровно с одним городом. Дан квадрат ABCD. Точки P и Q лежат на сторонах AB и BC соответственно, причём BP = BQ. Пусть H – основание перпендикуляра, опущенного из точки B на отрезок PC. Докажите, что угол DHQ – прямой. Можно ли шашечную доску размером
10×10
замостить плитками размером 1×4?
Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D. Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно. Докажите, что диагонали AD, BE и CF описанного
шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
а) Продолжение биссектрисы угла B треугольника ABC
пересекает описанную окружность в точке M; O — центр
вписанной окружности, Ob — центр вневписанной окружности,
касающейся стороны AC. Докажите, что точки A, C, O и Ob
лежат на окружности с центром M.
|
Задача 56544
Условиеа) Продолжение биссектрисы угла B треугольника ABC
пересекает описанную окружность в точке M; O — центр
вписанной окружности, Ob — центр вневписанной окружности,
касающейся стороны AC. Докажите, что точки A, C, O и Ob
лежат на окружности с центром M.
Решениеа) Так как
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке