Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Даны угол XAY и окружность внутри его. Постройте точку окружности, сумма расстояний от которой до прямых AX и AY минимальна.

Вниз   Решение


Окружности O1 и O2 лежат внутри треугольника и касаются друг друга извне, причём окружность O1 касается двух сторон треугольника, а окружность O2 -- тоже касается двух сторон треугольника, но не тех же, что O1. Доказать, что сумма радиусов этих окружностей больше радиуса окружности, вписанной в треугольник.

ВверхВниз   Решение


Все грани шестигранника – четырёхугольники, а в каждой его вершине сходятся по три ребра. Верно ли, что если для него существуют вписанная и описанная сферы, центры которых совпадают, то этот шестигранник – куб?

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


Даны отрезки a и b. Постройте отрезки   .

ВверхВниз   Решение


(Сообщил А. Л.Брудно) Прямоугольное поле m×n разбито на mn квадратных клеток. Некоторые клетки покрашены в чёрный цвет. Известно, что все чёрные клетки могут быть разбиты на несколько непересекающихся и не имеющих общих вершин чёрных прямоугольников. Считая, что цвета клеток даны в виде массива типа

array[1..m] of array [ 1..n] of boolean;
подсчитать число чёрных прямоугольников, о которых шла речь. Число действий должно быть порядка mn.

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что ломаная AOC делит ABCD на две фигуры равной площади.

ВверхВниз   Решение


а)  sin$ \alpha$sin$ \beta$sin$ \gamma$ $ \leq$ 3$ \sqrt{3}$/8;
б)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) $ \leq$ 3$ \sqrt{3}$/8.

ВверхВниз   Решение


Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды?

ВверхВниз   Решение


На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

ВверхВниз   Решение


а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ $ \geq$ $ \sqrt{3}$;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) $ \geq$ $ \sqrt{3}$.

Вверх   Решение

Задача 57448
Тема:    [ Симметричные неравенства для углов треугольника ]
Сложность: 4+
Классы: 9
Из корзины
Прислать комментарий

Условие

а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ $ \geq$ $ \sqrt{3}$;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) $ \geq$ $ \sqrt{3}$.

Решение

а) Согласно задаче 12.44, а) ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ = (a2 + b2 + c2)/4S. Кроме того,  a2 + b2 + c2 $ \geq$ 4$ \sqrt{3}$S (задача 10.53, б)).
б) Следует из а) (см. замечание).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 6
Название Симметричные неравенства для углов треугольника
Тема Симметричные неравенства для углов треугольника
задача
Номер 10.038

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .