Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Дан треугольник площади 1 со сторонами  a $ \leq$ b $ \leq$ c. Докажите, что  b $ \geq$ $ \sqrt{2}$.

Вниз   Решение


Внутри выпуклого n-угольника A1A2...An взята точка O так, что $ \overrightarrow{OA_1}$ +...+ $ \overrightarrow{OA_n}$ = $ \overrightarrow{0}$. Пусть d = OA1 +...+ OAn. Докажите, что периметр многоугольника не меньше 4d /n при n четном и не меньше 4dn/(n2 - 1) при n нечетном.

ВверхВниз   Решение


Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.

ВверхВниз   Решение


Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)

ВверхВниз   Решение


Найдите трехзначное число, которое представимо в виде суммы и двух, и трех, и четырех, и пяти, и шести квадратов различных натуральных чисел. Достаточно привести один пример.

ВверхВниз   Решение


Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.

ВверхВниз   Решение


а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

ВверхВниз   Решение


Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность S3
и т. д. Докажите, что окружность S7 совпадает с S1.

ВверхВниз   Решение


Карта Квадрландии представляет собой квадрат 6×6 клеток. Каждая клетка – либо королевство, либо спорная территория. Королевств всего 27, а спорных территорий 9. На спорную территорию претендуют все королевства по соседству и только они (то есть клетки, соседние со спорной по стороне или вершине). Может ли быть, что на каждые две спорные территории претендует разное число королевств?

ВверхВниз   Решение


Биссектриса и высота, проведённые из одной вершины некоторого треугольника, делят его противоположную сторону на три отрезка.
Может ли оказаться, что из этих отрезков можно сложить треугольник?

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1; прямые B1C1, BB1 и CC1 пересекают прямую AA1 в точках M, P и Q соответственно. Докажите, что:
а) A1M/MA = (A1P/PA) + (A1Q/QA);
б) если P = Q, то MC1 : MB1 = (BC1/AB) : (CB1/AC).

Вверх   Решение

Задача 57763
Тема:    [ Теорема о группировке масс ]
Сложность: 6
Классы: 9
Из корзины
Прислать комментарий

Условие

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1; прямые B1C1, BB1 и CC1 пересекают прямую AA1 в точках M, P и Q соответственно. Докажите, что:
а) A1M/MA = (A1P/PA) + (A1Q/QA);
б) если P = Q, то MC1 : MB1 = (BC1/AB) : (CB1/AC).

Решение

а) Поместим в точки B, C и A такие массы $ \beta$, $ \gamma$ и b + c, что CA1 : BA1 = $ \beta$ : $ \gamma$, BC1 : AC1 = b : $ \beta$ и  AB1 : CB1 = $ \gamma$ : c. Тогда M — центр масс этой системы, а значит, A1M/AM = (b + c)/($ \beta$ + $ \gamma$). Точка P является центром масс точек A, B и C с массами c, $ \beta$ и $ \gamma$, поэтому A1P/PA = c/($ \beta$ + $ \gamma$). Аналогично A1Q/AQ = b/($ \beta$ + $ \gamma$).
б) Как и в задаче а), получаем MC1/MB1 = (c + $ \gamma$)/(b + $ \beta$), BC1/AB = b/(b+$ \beta$) и  AC/CB1 = (c + $ \gamma$)/c. Кроме того, b = c, так как прямые AA1, BB1 и CC1 пересекаются в одной точке (см. задачу 14.7).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 14
Название Центр масс
Тема Центр масс
параграф
Номер 2
Название Теорема о группировке масс
Тема Теорема о группировке масс
задача
Номер 14.015

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .