Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Дана окружность S и точка O внутри ее. Рассмотрим все проективные преобразования, которые S отображают в окружность, а O — в ее центр. Докажите, что все такие преобразования отображают на бесконечность одну и ту же прямую.

Вниз   Решение


Дан треугольник ABC. На его сторонах AB и BC построены внешним образом квадраты ABMN и BCPQ. Докажите, что центры этих квадратов и середины отрезков MQ и AC образуют квадрат.

ВверхВниз   Решение


Дан выпуклый четырехугольник ABCD. Пусть P, Q — точки пересечения продолжений противоположных сторон AB и CD, AD и BC соответственно, R — произвольная точка внутри четырехугольника. Пусть K — точка пересечения прямых BC и PR, L — точка пересечения прямых AB и QR, M — точка пересечения прямых AK и DR. Докажите, что точки L, M и C лежат на одной прямой.

ВверхВниз   Решение


Точка внутри правильного 2n-угольника соединена с вершинами. Возникшие 2n треугольников раскрашены попеременно в голубой и красный цвет. Докажите, что сумма площадей голубых треугольников равна сумме площадей красных
    а) для  n = 4,   б) для  n = 3,   в) для произвольного n.

ВверхВниз   Решение


Параллелограмм описан около эллипса. Докажите, что диагонали параллелограмма содержат сопряженные диаметры эллипса.

ВверхВниз   Решение


Пусть O — центр вписанной окружности треугольника ABC, причем  OA $ \geq$ OB $ \geq$ OC. Докажите, что OA $ \geq$ 2r и  OB $ \geq$ r$ \sqrt{2}$.

ВверхВниз   Решение


Даны два треугольника ABC и A1B1C1. Известно, что прямые AA1, BB1 и CC1 пересекаются в одной точке O, и прямые AB1, BC1 и CA1 пересекаются в одной точке O1. Докажите, что прямые AC1, BA1 и CB1 тоже пересекаются в одной точке O2 (теорема о дважды перспективных треугольниках).

ВверхВниз   Решение


Докажите, что  S = crarb/(ra + rb).

ВверхВниз   Решение


Докажите, что  $ {\frac{2}{h_a}}$ = $ {\frac{1}{r_b}}$ + $ {\frac{1}{r_c}}$.

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC внешним образом построены правильные треугольники ABC' и AB'C. Точка M делит сторону BC в отношении BM : MC = 3 : 1; K и L — середины сторон AC' и B'C. Докажите, что углы треугольника KLM равны  30o, 60o и  90o.

Вверх   Решение

Задача 57938
Тема:    [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9
Из корзины
Прислать комментарий

Условие

На сторонах AB и AC треугольника ABC внешним образом построены правильные треугольники ABC' и AB'C. Точка M делит сторону BC в отношении BM : MC = 3 : 1; K и L — середины сторон AC' и B'C. Докажите, что углы треугольника KLM равны  30o, 60o и  90o.

Решение

Пусть $ \overrightarrow{AB}$ = 4a, $ \overrightarrow{CA}$ = 4b. Пусть, далее, R — поворот, переводящий вектор $ \overrightarrow{AB}$ в  $ \overrightarrow{AC'}$ (а значит, вектор $ \overrightarrow{CA}$ — в  $ \overrightarrow{CB'}$). Тогда $ \overrightarrow{LM}$ = (a + b) - 2Rb и  $ \overrightarrow{LK}$ = - 2Rb + 4b + 2Ra. Легко проверить, что b + R2b = Rb. Поэтому 2R($ \overrightarrow{LM}$) = $ \overrightarrow{LK}$, а из этого соотношения вытекает требуемое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 18
Название Поворот
Тема Поворот
параграф
Номер 2
Название Поворот на 60 градусов
Тема Повороты на $60^\circ$ и $120^\circ$
задача
Номер 18.019

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .