ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри выпуклого четырехугольника ABCD построены равнобедренные
прямоугольные треугольники ABO1, BCO2, CDO3
и DAO4. Докажите, что если O1 = O3, то O2 = O4.
На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
Пусть точки A, B, C и D лежат на конике, заданной уравнением второй степени f = 0. Докажите, что
f =
где Перед Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что Даны четыре окружности S1, S2, S3, S4. Пусть S1
и S2 пересекаются в точках A1 и A2, S2 и S3 —
в точках B1 и B2, S3 и S4 — в точках C1 и C2,
S4 и S1 — в точках D1 и D2 (рис.). Докажите, что
если точки A1, B1, C1, D1 лежат на одной окружности S
(или прямой), то и точки A2, B2, C2, D2
лежат на одной окружности (или прямой).
Триангуляцией многоугольника называют его разбиение
на треугольники, обладающее тем свойством, что эти треугольники
либо имеют общую сторону, либо имеют общую вершину,
либо не имеют общих точек (т. е. вершина одного треугольника
не может лежать на стороне другого). Докажите, что
треугольники триангуляции можно раскрасить в три цвета так,
что имеющие общую сторону треугольники будут разного цвета.
На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем прямые AA1, BB1 и CC1
пересекаются в одной точке P. Докажите, что прямые AA2, BB2
и CC2, симметричные этим прямым относительно соответствующих
биссектрис, тоже пересекаются в одной точке Q.
Решая задачу: "Какое значение принимает выражение x2000 + x1999 + x1998 + 1000x1000 + 1000x999 + 1000x998 + 2000x³ + 2000x² + 2000x + 3000 Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать? Пусть ABCD и
A1B1C1D1 — два выпуклых
четырехугольника с соответственно равными сторонами. Докажите, что
если
На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки. Постройте образ точки A при инверсии относительно
окружности S с центром O.
ABC - прямоугольный треугольник с прямым углом C. Докажите, что
cn > an + bn при n > 2.
а) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите,
что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB
пересекаются в одной точке (Штейнер).
|
Задача 58520
Условиеа) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите,
что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB
пересекаются в одной точке (Штейнер).
Решениеа) Продолжим рассуждения из решение задачи 31.052 дальше.
Приравнивая (2) и (3),
получим, что точки пересечения прямых AF и BE, ED и CF,
AD и BC лежат на прямой
б) При доказательстве теоремы Штейнера исходными четырехугольниками были ABCD, AFED и BEFC. Можно исходить также из четырехугольников ABFE, ABDC и CDFE. Тогда получим теорему Киркмана. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке