Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)

Вниз   Решение


Что больше:  1234567/7654321  или  1234568/7654322?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Мачеха приказала Золушке сшить квадратное одеяло из пяти прямоугольных кусков так, чтобы длины сторон всех кусков были попарно различны и составляли целое число дюймов. Сможет ли Золушка выполнить задание без помощи феи-крестной?

ВверхВниз   Решение


Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

ВверхВниз   Решение


Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.
a) Докажите, что и четвертая прямая обладает тем же свойством.
б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 72o ?

ВверхВниз   Решение


Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

ВверхВниз   Решение


ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .

ВверхВниз   Решение


Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

ВверхВниз   Решение


На стороне AB треугольника ABC взята такая точка P, что  AP = 2PB,  а на стороне AC – ее середина, точка Q. Известно, что  CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Докажите, что при любом m0 число шагов k в алгоритме Евклида для чисел m0 и m1 удовлетворяет неравенству  k ≤ 5n.

ВверхВниз   Решение


Автор: Белухов Н.

Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.

ВверхВниз   Решение


Докажите равенства
а) $ \sqrt[4]{\dfrac{7+3\sqrt5}{2}}$ - $ \sqrt[4]{\dfrac{7-3\sqrt5}{2}}$ = 1;
б) $ \sqrt[5]{\dfrac{11+5\sqrt5}{2}}$ + $ \sqrt[9]{\dfrac{76-34\sqrt5}{2}}$ = 1.
Найдите общую формулу, для которой данные равенства являются частными случаями.

Вверх   Решение

Задача 60588
Темы:    [ Доказательство тождеств. Преобразования выражений ]
[ Числа Фибоначчи ]
Сложность: 6
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Докажите равенства
а) $ \sqrt[4]{\dfrac{7+3\sqrt5}{2}}$ - $ \sqrt[4]{\dfrac{7-3\sqrt5}{2}}$ = 1;
б) $ \sqrt[5]{\dfrac{11+5\sqrt5}{2}}$ + $ \sqrt[9]{\dfrac{76-34\sqrt5}{2}}$ = 1.
Найдите общую формулу, для которой данные равенства являются частными случаями.


Ответ

$\displaystyle \sqrt[n]{\dfrac{L_n+F_n\sqrt5}{2}}$ - (- 1)k$\displaystyle \sqrt[k]{\dfrac{L_k-F_k\sqrt5}{2}}$ = 1.


Определение чисел Ln дано в задаче 3.133.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 4
Название О том, как размножаются кролики
Тема Классическая комбинаторика
задача
Номер 03.136

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .