Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Товарный поезд, отправившись из Москвы в x часов y минут, прибыл в Саратов в y часов z минут. Время в пути составило z часов x минут.
Найдите все возможные значения x.

Вниз   Решение


В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).

ВверхВниз   Решение


В треугольнике ABC угол С в три раза больше угла A. На стороне AB взята такая точка D, что  BD = BC.  Найдите CD, если  AD = 4.

ВверхВниз   Решение


На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?

ВверхВниз   Решение


Найдите такие линейные функции  P(x)  и  Q(x),  чтобы выполнялось равенство   P(x)(2x³ – 7x² + 7x – 2) + Q(x)(2x³ + x² + x – 1) = 2x – 1.

ВверхВниз   Решение


В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.

ВверхВниз   Решение


Пользуясь схемой Горнера, разложите  x4 + 2x3 – 3x2 – 4x + 1  по степеням  x + 1.

ВверхВниз   Решение


Значение многочлена  Pn(x) = anxn + an–1xn–1 + ... + a1x + a0    (an ≠ 0)  в точке  x = c  можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде  Pn(x) = (...(anx + an–1)x + ... + a1)x + a0.   Пусть  bn, bn–1, ..., b0  – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть  bn = anbk = cbk+1 + ak  (k = n – 1, ..., 0).  Докажите, что при делении многочлена Pn(x) на  x – c  с остатком, у многочлена в частном коэффициенты будут совпадать с числами  bn–1, ..., b1,  а остатком будет число b0. Таким образом, будет справедливо равенство:
Pn(x) = (x – c)(bnxn–1 + ... + b2x + b1) + b0.

Вверх   Решение

Задача 61000
Темы:    [ Тождественные преобразования ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11
Название задачи: Схема Горнера.
Из корзины
Прислать комментарий

Условие

Значение многочлена  Pn(x) = anxn + an–1xn–1 + ... + a1x + a0    (an ≠ 0)  в точке  x = c  можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде  Pn(x) = (...(anx + an–1)x + ... + a1)x + a0.   Пусть  bn, bn–1, ..., b0  – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть  bn = anbk = cbk+1 + ak  (k = n – 1, ..., 0).  Докажите, что при делении многочлена Pn(x) на  x – c  с остатком, у многочлена в частном коэффициенты будут совпадать с числами  bn–1, ..., b1,  а остатком будет число b0. Таким образом, будет справедливо равенство:
Pn(x) = (x – c)(bnxn–1 + ... + b2x + b1) + b0.


Решение

Последнее равенство после раскрытия скобок и приведения подобных сводится к системе соотношений  an = bn,  ak = bk – cbk+1,  которая эквивалентна приведенной в условии.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 6
Название Многочлены
Тема Многочлены
параграф
Номер 2
Название Алгоритм Евклида для многочленов и теорема Безу.
Тема Теорема Безу. Разложение на множители
задача
Номер 06.077

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .