Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Пусть p – полупериметр остроугольного треугольника ABC, q – полупериметр треугольника, образованного основаниями его высот.
Докажите, что  p : q = R : r,  где R и r – радиусы описанной и вписанной окружностей треугольника ABC.

Вниз   Решение


AB — диаметр окружности, BC и CDA — касательная и секущая. Найдите отношение CD : DA, если BC равно радиусу окружности.

ВверхВниз   Решение


В трапеции ABCD основание  AB = a,  основание  CD = b  (a < b).  Окружность, проходящая через вершины A, B и C, касается стороны AD.
Найдите диагональ AC.

ВверхВниз   Решение


Дано число x, большее 1. Обязательно ли имеет место равенство

[$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]?

ВверхВниз   Решение


Докажите, что две непересекающиеся окружности S1 и S2 (или окружность и прямую) можно при помощи инверсии перевести в пару концентрических окружностей.

ВверхВниз   Решение


Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

ВверхВниз   Решение


Докажите, что при инверсии относительно описанной окружности изодинамические центры треугольника переходят друг в друга.

ВверхВниз   Решение


Найдите количество перестановок a1, a2, ... , a10 чисел 1,2,...,10, таких, что ai+1 не меньше, чем ai-1 (для i=1,2,...,9).

ВверхВниз   Решение


Из точки O на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.

ВверхВниз   Решение


Гениальные математики. а) Каждому из двух гениальных математиков сообщили по натуральному числу, причем им известно, что эти числа отличаются на единицу. Они поочередно спрашивают друг друга: "Известно ли тебе мое число?" Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики предполагаются правдивыми и бессмертными.)
б) Как изменится число заданных вопросов, если с самого начала известно, что данные числа не превосходят 1000?

ВверхВниз   Решение


Среди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами.
При каких n такое возможно?

ВверхВниз   Решение


Окружности радиусов ta, tb, tc касаются внутренним образом описанной окружности треугольника ABC в его вершинах A, B, C и касаются друг друга внешним образом. Докажите, что

ta = $\displaystyle {\frac{Rh_a}{a+h_a}}$,    tb = $\displaystyle {\frac{Rh_b}{b+h_b}}$,    tc = $\displaystyle {\frac{Rh_c}{c+h_c}}$.

ВверхВниз   Решение


Итерационная формула Герона. Докажите, что последовательность чисел {xn}, заданная условиями

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{k}{x_n}}\right.$xn + $\displaystyle {\frac{k}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{k}{x_n}}\right)$,

сходится. Найдите предел этой последовательности.

ВверхВниз   Решение


Трапеция KLMN с основаниями KN и LM вписана в окружность, центр которой лежит на основании KN. Диагональ KM трапеции равна 4, а боковая сторона KL равна 3. Найдите основание LM.

ВверхВниз   Решение


Равные отрезки AB и CD пересекаются в точке K. Известно, что  AC || BD.  Докажите, что треугольники AKC и BKD равнобедренные.

ВверхВниз   Решение


Через точку A проведена прямая l, пересекающая окружность S с центром O в точках M и N и не проходящая через O. Пусть M' и N' — точки, симметричные M и N относительно OA, а A' — точка пересечения прямых MN' и M'N. Докажите, что A' совпадает с образом точки A при инверсии относительно S (и, следовательно, не зависит от выбора прямой l).

ВверхВниз   Решение


При каком значении K величина Ak = $ {\dfrac{19^k+66^k}{k!}}$ максимальна?

ВверхВниз   Решение


Дан выпуклый многоугольник  A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 — точки B2 и D3 и т. д. таким образом, что если построить параллелограммы  A1B1C1D1,..., AnBnCnDn, то прямые  A1C1,..., AnCn пересекутся в одной точке O. Докажите, что A1B1 . A2B2 . ... . AnBn = A1D1 . A2D2 . ... . AnDn.

ВверхВниз   Решение


Может ли
а) сумма двух рациональных чисел быть иррациональной?
б) сумма двух иррациональных чисел быть рациональной?
в) иррациональное число в иррациональной степени быть рациональным?

ВверхВниз   Решение


Расстояния от точки X стороны BC треугольника ABC до прямых AB и AC равны db и dc. Докажите, что  db/dc = BX . AC/(CX . AB).

ВверхВниз   Решение


В трапеции ABCD известно, что  AB = a,  BC = b  (a ≠ b).  Определите, что пересекает биссектриса угла A: основание BC или боковую сторону CD?

ВверхВниз   Решение


Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

ВверхВниз   Решение


Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.

ВверхВниз   Решение


На доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.
Например, для чисел 5, 3, 3, 2, получается следующая цепочка   (5, 3, 3, 2)  →  (4, 4, 3, 1, 1)  →  (5, 3, 3, 2).

Вверх   Решение

Задача 61510
Темы:    [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

На доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.
Например, для чисел 5, 3, 3, 2, получается следующая цепочка   (5, 3, 3, 2)  →  (4, 4, 3, 1, 1)  →  (5, 3, 3, 2).


Подсказка

Проследите за изменением диаграммы Юнга.


Решение

См. задачу 98424.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 11
Название Последовательности и ряды
Тема Последовательности
параграф
Номер 3
Название Производящие функции
Тема Производящие функции
задача
Номер 11.083

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .