ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x. Точка I – центр вписанной окружности треугольника ABC, M – середина стороны AC, а W – середина дуги AB описанной окружности, не содержащей C. Оказалось, что ∠AIM = 90°. В каком отношении точка I делит отрезок CW? Докажите, что для любого натурального числа n > 1 найдутся такие натуральные числа a, b, c, d, что a + b = c + d = ab – cd = 4n. На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой? a и b – натуральные числа. Известно, что a² + b² делится на ab. Докажите, что a = b. Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным. В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин. Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80. Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки 0. Длина первого прыжка равна 3, второго – 5, третьего – 9, и так далее (длина k-го прыжка равна 2k + 1). Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)? Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны. Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году? Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше? Решите уравнение $$\tan\pi {}x = [\lg \pi^x]-[\lg [\pi^x]],$$ где $[a]$ обозначает наибольшее целое число, не превосходящее $a$. По кругу записаны 100 целых чисел. Каждое из чисел больше суммы двух чисел, следующих за ним по часовой стрелке. |
Задача 65239
УсловиеПо кругу записаны 100 целых чисел. Каждое из чисел больше суммы двух чисел, следующих за ним по часовой стрелке. Решение Оценка. Предположим, что два неотрицательных числа стоят рядом. Тогда число, стоящее перед ними, больше их суммы, то есть положительно. Аналогично, число перед ним также положительно, и т. д. В итоге получаем, что все числа неотрицательны; но тогда наименьшее из них не может быть больше суммы двух следующих – противоречие. Итак, среди каждых двух чисел, стоящих рядом, есть хотя бы одно отрицательное. Значит, положительных чисел не более 50. Ответ49. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке