ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Два автобуса ехали навстречу друг другу с постоянными скоростями. Первый выехал из Москвы в 11 часов утра и прибыл в Ярославль в 16 часов, а второй выехал из Ярославля в 12 часов и прибыл в Москву в 17 часов. В котором часу они встретились? Известно, что 1/a – 1/b = 1/a+b. Докажите, что 1/a² – 1/b² = 1/ab. У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и a/c×b (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.) В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей? Барон Мюнхгаузен утверждает, что к любому двузначному числу можно справа приписать еще две цифры так, чтобы получился полный квадрат (к примеру, если задано число $10$, то дописываем $24$ и получаем $1024 = 32^2$). Прав ли барон? Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой. Можно ли произвольный ромб разрезать не более, чем на две части так, чтобы из этих частей сложить прямоугольник? Дан треугольник ABC. Две окружности, проходящие через вершину A, касаются стороны BC в точках B и C соответственно. Пусть D – вторая точка пересечения этих окружностей (A лежит ближе к BC, чем D). Известно, что BC = 2BD. Докажите, что ∠DAB = 2∠ADB. Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$. |
Задача 66600
УсловиеМногочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$. РешениеПусть $x_1 < x_2 < x_3$ – корни многочлена $P(x)$. По условию $x_3 = x_1 + x_2$. Заметим, что $x_1 > 0$ (а значит, все корни положительны), так как иначе $x_3\leqslant x_2$, что противоречит максимальности корня $x_3$. Далее можно рассуждать по-разному. Первый способ. Пользуясь формулами Виета для коэффициентов $a,b,c$, получаем $$ c-ab =-x_1x_2x_3+(x_1+x_2+x_3)(x_1x_2+x_1x_3+x_2x_3)=$$ $$=-x_1 x_2 (x_1+x_2)+2(x_1+x_2) \big(x_1x_2+(x_1+x_2)^2\big)=(x_1+x_2) \big(x_1 x_2+2(x_1+x_2)^2\big)>0,$$ откуда и следует требуемое неравенство. Второй способ. Заметим, что $-a=x_1+x_2+x_3=2x_3$. Кроме того, $c-ab=P(-a)=P(2x_3)>0,$ так как многочлен $P(x)$ положителен при $x > x_3$. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке