Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Чему равна сумма цифр всех чисел от единицы до миллиарда?

Вниз   Решение


Пусть O — центр описанной окружности треугольника ABC, H — точка пересечения высот. Докажите, что a2 + b2 + c2 = 9R2 - OH2.

ВверхВниз   Решение


Даны два многочлена P(x) и Q(x) положительной степени, причём  P(P(x)) ≡ Q(Q(x))  и  P(P(P(x))) ≡ Q(Q(Q(x))).
Обязательно ли тогда  P(x) ≡ Q(x)?

ВверхВниз   Решение


На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?

ВверхВниз   Решение


Докажите, что количество частей, на которые данные прямые разбивают плоскость, равно 1 + n + $ \sum$($ \lambda$(P) - 1), причем среди этих частей 2n неограниченных.

ВверхВниз   Решение


Части, на которые плоскость разрезана прямыми. раскрашены в красный и синий цвет так, что соседние части разного цвета (см. задачу 27.1). Пусть a -- количество красных частей, b — количество синих частей. Докажите, что

a$\displaystyle \le$2b - 2 - $\displaystyle \sum$($\displaystyle \lambda$(P) - 2),

причем равенство достигается тогда и только тогда, когда красные области — треугольники и углы.

ВверхВниз   Решение


На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги.

ВверхВниз   Решение


Докажите, что  S = rc2tg($ \alpha$/2)tg($ \beta$/2)ctg($ \gamma$/2).

ВверхВниз   Решение


Числа [a], [2a], ..., [Na] различны между собой, и числа $ \left[\vphantom{\frac{1}{a}}\right.$$ {\frac{1}{a}}$$ \left.\vphantom{\frac{1}{a}}\right]$, $ \left[\vphantom{\frac{2}{a}}\right.$$ {\frac{2}{a}}$$ \left.\vphantom{\frac{2}{a}}\right]$, ..., $ \left[\vphantom{\frac{M}{a}}\right.$$ {\frac{M}{a}}$$ \left.\vphantom{\frac{M}{a}}\right]$ тоже различны между собой. Найти все такие a.

ВверхВниз   Решение


Автор: Тутеску Л.

Решите систему уравнений:
   (x3 + x4 + x5)5 = 3x1,
   (x4 + x5 + x1)5 = 3x2,
   (x5 + x1 + x2)5 = 3x3,
   (x1 + x2 + x3)5 = 3x4,
   (x2 + x3 + x4)5 = 3x5.

ВверхВниз   Решение


Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы  $a(x) + b(x)$,  где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами,
  а) ровно одним способом?
  б) ровно двумя способами?
Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.

Вверх   Решение

Задача 66849
Тема:    [ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы  $a(x) + b(x)$,  где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами,
  а) ровно одним способом?
  б) ровно двумя способами?
Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.


Решение

  Пусть ненулевой многочлен $P$ представим в виде суммы квадратов двух многочленов, то есть  $P = F^2 + G^2$.  Заметим, что  $F^2 + G^2 = (cF + sG)^2 + (sF - cG)^2$,  где  $c$ = cos α,  $s$ = sin α.
Полагая  $0 \leqslant\alpha < \frac{π}{2}$,  получим бесконечно много представлений.
  Допустим, какие-то два из них совпадут, то есть  $(c_1F + s_1G)^2 = (c_2F + s_2G)^2$  или  $(c_1F + s_1G)^2 = (s_2F - c_2G)^2$.  Перенося влево и раскладывая на множители, получим, что какая-то из скобок равна нулю в бесконечном числе точек, следовательно, в ней стоит нулевой многочлен. Посмотрим на коэффициенты перед $F$ и $G$ в этой скобке. Хотя бы один из них не равен нулю, так как числа  $c_1 + c_2, c_1-c_2, c_1 + s_2, s_1+c_2$  ненулевые. Значит, $F$ и $G$ линейно зависимы. Можно считать, что $G = tF$ для некоторого числа $t$. Тогда  $P = (1 + t^2)F^2$.  Поскольку $F$ – ненулевой, то, по-разному раскладывая  $1 + t^2$  в сумму квадратов двух чисел, получим бесконечное число представлений многочлена $P$.


Ответ

Не существует.

Замечания

баллы: 2 + 3

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Номер 41
Год 2019/20
неизвестно
Вариант весенний тур, базовый вариант, 10-11 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .