Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что  ∠AOD = 3∠ACD.

Вниз   Решение


Объём пирамиды ABCD равен 5. Через середины рёбер AD и BC проведена плоскость, пересекающая ребро CD в точке M . При этом DM:MC = 2:3. Найдите площадь сечения пирамиды указанной плоскостью, если расстояние от неё до вершины A равно 1.

ВверхВниз   Решение


Правильный восьмиугольник со стороной 1 разрезан на параллелограммы. Докажите, что среди них есть по крайней мере два прямоугольника, причем сумма площадей всех прямоугольников равна 2.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника взяты точки A1, B1, C1 соответственно, причём радиусы окружностей, вписанных в треугольники A1BC1, AB1C1 и A1B1C, равны между собой и равны r. Радиус окружности, вписанной в треугольник A1B1C1, равен r1. Найдите радиус окружности, вписанной в треугольник ABC.

ВверхВниз   Решение


Дана бесконечная последовательность чисел a1, ..., an, ... Она периодична с периодом 100, то есть  a1 = a101a2 = a102,  ... Известно, что  a1 ≥ 0,  a1 + a2 ≤ 0,  a1 + a2 + a3 ≥ 0  и вообще, сумма  a1 + a2 + ... + an  неотрицательна при нечётном n и неположительна при чётном n. Доказать, что  |a99| ≥ |a100|.

ВверхВниз   Решение


Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

ВверхВниз   Решение


В трапеции ABCD основание  AD = 2,  основание  BC = 1.  Боковые стороны  AB = CD = 1.  Найдите диагонали трапеции.

ВверхВниз   Решение


Три мухи равной массы ползают по сторонам треугольника так, что их центр масс остается на месте. Докажите, что он совпадает с точкой пересечения медиан треугольника ABC, если известно, что одна муха проползла по всей границе треугольника.

ВверхВниз   Решение


Исходное сообщение, состоящее из букв русского алфавита и знака пробела (-) между словами, преобразуется в цифровое сообщение заменой каждого его символа парой цифр согласно следующей таблице: \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline А & Б & В & Г & Д & Е & Ж & З & И & К & Л & М & Н & О & П \\ \hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline \end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Р & С & Т & У & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я & - \\ \hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \hline \end{tabular} Для зашифрования полученного цифрового сообщения используется отрезок некоторой последовательности с периодом 1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 (при этом неизвестно, с какого места начинается последовательность). При зашифровании каждая цифра сообщения складывается с соответствующей цифрой отрезка и заменяется последней цифрой полученной суммы. Восстановите сообщение: 2339867216458160670617315588 (Задача с сайта www.cryptography.ru.)

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD угол $ \angle$A = 90o, а угол $ \angle$C $ \leqslant$ 90o. Из вершин B и D на диагональ AC опущены перпендикуляры BE и DF. Известно, что AE = CF. Докажите, что угол C — прямой.

ВверхВниз   Решение


Автор: Бутырин Б.

Петя и Вася играют на отрезке $[0; 1]$, в котором отмечены точки $0$ и $1$. Игроки ходят по очереди, начинает Петя. Каждый ход игрок отмечает ранее не отмеченную точку отрезка. Если после хода очередного игрока нашлись три последовательных отрезка между соседними отмеченными точками, из которых можно сложить треугольник, то сделавший такой ход игрок объявляется победителем, и игра заканчивается. Получится ли у Пети гарантированно победить?

ВверхВниз   Решение


Описанная окружность треугольника ABC пересекает стороны AD и CD параллелограмма ABCD в точках K и L. Пусть M – середина дуги KL, не содержащей точку B. Докажите, что  DMAC.

ВверхВниз   Решение


Автор: Saghafian M.

Пусть $A_1$, $A_2$, $A_3$, $A_4$ и $B_1$, $B_2$, $B_3$, $B_4$ – две четверки точек, не лежащих на одной окружности. Известно, что для любых $i$, $j$, $k$ радиусы описанных окружностей треугольников $A_iA_jA_k$ и $B_iB_jB_k$ равны. Обязательно ли $A_iA_j=B_iB_j$ для любых $i$, $j$?

Вверх   Решение

Задача 66966
Темы:    [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Автор: Saghafian M.

Пусть $A_1$, $A_2$, $A_3$, $A_4$ и $B_1$, $B_2$, $B_3$, $B_4$ – две четверки точек, не лежащих на одной окружности. Известно, что для любых $i$, $j$, $k$ радиусы описанных окружностей треугольников $A_iA_jA_k$ и $B_iB_jB_k$ равны. Обязательно ли $A_iA_j=B_iB_j$ для любых $i$, $j$?

Решение

Пусть $A_1A_2A_3$, $B_1B_2B_3$ – два неравных треугольника, вписанных в окружности с равными радиусами $R$, а $A_4$, $B_4$ – их ортоцентры. Тогда у всех треугольников $A_iA_jA_k$ и $B_iB_jB_k$ радиусы описанных окружностей равны $R$, но не все равенства $A_iA_j=B_iB_j$ имеют место.

Ответ

Нет.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2021
класс
Класс 8
задача
Номер 8.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .