ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что ∠MBK = 90°. Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
С помощью циркуля и линейки на данной прямой MN постройте точку, из которой данный отрезок AB был бы виден под данным углом.
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?
На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.
В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?
Докажите, что
a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей. Какие-то две команды набрали в круговом волейбольном турнире одинаковое число очков. Даны m = 2n + 1 точек — середины сторон m-угольника.
Постройте его вершины.
Докажите, что в трёхзначном числе, кратном 37, всегда можно переставить цифры так, что новое число также будет кратно 37.
Докажите, что две различные окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.
Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой. |
Задача 67210
УсловиеДан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой. Решение 1Построим параллелограмм $ABCU$. Точки $E$, $F$ симметричны $U$ относительно биссектрис углов $BAD$, $BCD$ соответственно. Поскольку $\angle AUC+\angle ADC=180^{\circ}$, эти биссектрисы перпендикулярны. Следовательно, треугольник $UEF$ прямоугольный, а биссектрисы пересекаются в центре описанной около него окружности – точке $M$. Решение 2В пятиугольнике $ABCFE$ $\angle A+\angle C=180^{\circ}$, значит, $\angle B+\angle E+\angle F=360^{\circ}$. Отложим от произвольной точки $U$ отрезки $UX=AB=CF$, $UY=BC=AE$, $UZ=ME=MF$ так, что $\angle XUY=\angle B$, $\angle YUZ=\angle E$, $\angle ZUX=\angle F$. Тогда треугольники $UXY$, $UYZ$, $UZX$ и $XYZ$ равны соответственно треугольникам $BAC$, $EMA$, $FMC$ и $ACM$, следовательно, $\angle AMC=\angle AME+\angle CMF=90^{\circ}$. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке