Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что если стороны a, b и противолежащие им углы α и β треугольника связаны соотношением  a/cos α = b/cos β,  то треугольник – равнобедренный.

Вниз   Решение


Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

ВверхВниз   Решение


Постройте четырехугольник по углам и диагоналям.

ВверхВниз   Решение


Число Y получается из натурального числа X некоторой перестановкой его цифр. Известно, что  X + Y = 10200.  Доказать, что X делится на 50.

ВверхВниз   Решение


а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

ВверхВниз   Решение


Исследуйте последовательности на сходимость:
а) xn + 1 = $ {\dfrac{1}{1+x_n}}$,    x0 = 1;
б) xn + 1 = sin xn,     x0 = a $ \in$ (0;$ \pi$);
в) xn + 1 = $ \sqrt{a+x}$,    a > 0, x0 = 0.

ВверхВниз   Решение


a, b и c - длины сторон произвольного треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.


ВверхВниз   Решение


Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

ВверхВниз   Решение


Докажите следующий вариант формулы Бине:  

ВверхВниз   Решение


Докажите равенство:  
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)

ВверхВниз   Решение


Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.

ВверхВниз   Решение


На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.

Вверх   Решение

Задача 78625
Темы:    [ Метрические соотношения (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.

Решение

Предположим, что на сторонах треугольника ABC внешним образом построены квадраты ABB1A1, BCC2B2, ACC3A3 и вершины A1, B1, B2, C2, C3, A3 лежат на одной окружности S. Серединные перпендикуляры к отрезкам A1B1, B2C2, A3C3 проходят через центр окружности S. Ясно, что серединные перпендикуляры к отрезкам A1B1, B2C2, A3C3 совпадают с серединными перпендикулярами к сторонам треугольника ABC, поэтому центр окружности S совпадает с центром описанной окружности треугольника. Обозначим центр описанной окружности треугольника ABC через O. Расстояние от точки O до прямой B2C2 равно  R cos A + 2R sin A, где R — радиус описанной окружности треугольника ABC. Поэтому   OB22 = (R sin A)2 + (R cos A+2R sin A)2 = R2(3 + 2(sin 2A - cos 2A)) = R2(3 - 2$ \sqrt{2}$cos(45o + 2A)). Ясно, что для того, чтобы треугольник обладал требуемым свойством, необходимо и достаточно, чтобы  OB22 = OC32 = OA12, т. е.   cos(45o + 2$ \angle$A) = cos(45o + 2$ \angle$B) = cos(45o+2$ \angle$C). Это равенство выполняется при $ \angle$A = $ \angle$B = $ \angle$C = 60o. Если же $ \angle$A$ \ne$$ \angle$B, то (45o + 2$ \angle$A) + (45o + 2$ \angle$B) = 360o, т. е. $ \angle$A + $ \angle$B = 135o. Тогда $ \angle$C = 45o и $ \angle$A = $ \angle$C = 45o, $ \angle$B = 90o (или $ \angle$B = 45o,$ \angle$A = 90o). Мы видим, что треугольник должен быть либо равносторонним, либо равнобедренным прямоугольным.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 30
Год 1967
вариант
1
Класс 9
Тур 2
задача
Номер 3
олимпиада
Название Московская математическая олимпиада
год
Номер 30
Год 1967
вариант
1
Класс 10
Тур 2
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .