Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 21 задача
Версия для печати
Убрать все задачи

Автор: Назаров Ф.

Положительные числа a, b, c, d таковы, что  a ≤ b ≤ c ≤ d  и  a + b + c + d ≥ 1.  Докажите, что  a² + 3b² + 5c² + 7d² ≥ 1.

Вниз   Решение


Автор: Назаров Ф.

В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.

ВверхВниз   Решение


Таблица размером 2017×2017 заполнена ненулевыми цифрами. Среди 4034 чисел, десятичные записи которых совпадают со строками и столбцами этой таблицы, читаемыми слева направо и сверху вниз соответственно, все, кроме одного, делятся на простое число p, а оставшееся число на p не делится. Найдите все возможные значения p.

ВверхВниз   Решение


Автор: Фомин Д.

Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?

ВверхВниз   Решение


Автор: Назаров Ф.

Положительные числа a, b, c таковы, что  a ≥ b ≥ c  и  a + b + c ≤ 1.  Докажите, что  a² + 3b² + 5c² ≤ 1.

ВверхВниз   Решение


Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?

ВверхВниз   Решение


Автор: Захаров Д.

Изначально на белой клетчатой плоскости конечное число клеток окрашено в чёрный цвет. На плоскости лежит бумажный клетчатый многоугольник $M$, в котором больше одной клетки. Его можно сдвигать, не поворачивая, в любом направлении на любое расстояние, но так, чтобы после сдвига он лежал "по клеткам". Если после очередного сдвига ровно одна клетка у $M$ лежит на белой клетке плоскости, эту белую клетку окрашивают в чёрный цвет и делают следующий сдвиг. Докажите, что существует такая белая клетка, которая никогда не будет окрашена в чёрный цвет, сколько бы раз мы ни сдвигали $M$ по описанным правилам.

ВверхВниз   Решение


Автор: Назаров Ф.

Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?

ВверхВниз   Решение


Дан треугольник $ABC$ и окружность $\gamma$ с центром в точке $A$, которая пересекает стороны $AB$ и $AC$. Пусть общая хорда описанной окружности треугольника и окружности $\gamma$ пересекает стороны $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Отрезки $CX$ и $BY$ пересекают $\gamma$ в точках $S$ и $T$ соответственно. Описанные окружности треугольников $ACT$ и $BAS$ пересекаются в точках $A$ и $P$. Докажите, что прямые $CX$, $BY$, и $AP$ пересекаются в одной точке.

ВверхВниз   Решение


Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны.

ВверхВниз   Решение


48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на одну подкову 5 минут?

ВверхВниз   Решение


Автор: Фомин Д.

В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну.

ВверхВниз   Решение


Автор: Ильичев В.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

ВверхВниз   Решение


Задано несколько красных и несколько синих точек. Некоторые из них соединены отрезками. Назовём точку «особой», если более половины из соединённых с ней точек имеют цвет, отличный от её цвета. Если есть хотя бы одна особая точка, то выбираем любую особую точку и перекрашиваем в другой цвет. Докажите, что через конечное число шагов не останется ни одной особой точки.

ВверхВниз   Решение


К Ивану на день рождения пришли 2$N$ гостей. У Ивана есть $N$ чёрных и $N$ белых цилиндров. Он хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или несколько) так, чтобы в каждом хороводе было хотя бы два человека и люди в цилиндрах одного цвета не стояли в хороводе рядом. Докажите, что Иван может устроить бал ровно $(2N)!$ различными способами. (Цилиндры одного цвета неразличимы; все гости различимы.)

ВверхВниз   Решение


Дан треугольник ABC и прямая l, пересекающая BC, CA и AB в точках A1, B1 и C1 соответственно. Точка A' – середина отрезка, соединяющего проекции A1 на AB и AC. Аналогично определяются точки B' и C'.
  а) Докажите, что A', B' и C' лежат на некоторой прямой l'.
  б) Докажите, что, если l проходит через центр описанной окружности треугольника ABC, то l' проходит через центр его окружности девяти точек.

ВверхВниз   Решение


Рокфеллер и Маркс играют в такую игру. Имеется  $n > 1$  городов, во всех одно и то же число жителей. Сначала у каждого жителя есть ровно одна монета (монеты одинаковы). За ход Рокфеллер выбирает по одному жителю из каждого города, а Маркс перераспределяет между ними их деньги произвольным образом с единственным условием, чтобы распределение не осталось таким, каким только что было. Рокфеллер выиграет, если в какой-то момент в каждом городе будет хотя бы один человек без денег. Докажите, что Рокфеллер может действовать так, чтобы всегда выигрывать, как бы ни играл Маркс, если в каждом городе
  а) ровно $2n$ жителей;
  б) ровно  $2n - 1$  житель.

ВверхВниз   Решение


Каждому городу в некоторой стране присвоен индивидуальный номер. Имеется список, в котором для каждой пары номеров указано, соединены города с данными номерами железной дорогой или нет. Оказалось, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, но список по-прежнему будет верным. Верно ли, что, какие ни взять два номера M и N из списка, можно так перенумеровать города, что город с номером M получит номер N, город с номером N получит номер M, но список по-прежнему будет верным?

ВверхВниз   Решение


Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

ВверхВниз   Решение


В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?

ВверхВниз   Решение


Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.

Вверх   Решение

Задача 78758
Темы:    [ Площадь сферы и ее частей ]
[ Описанные многогранники ]
Сложность: 6-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.

Решение

Первое решение.

Предположим противное, то есть, что расстояние между любыми двумя точками поверхности нашего 19-гранника не больше 21. Тогда этот многогранник лежит внутри сферы радиуса 11, концентричной сфере радиуса 10, а каждая его грань лежит между сферами. Поэтому площадь каждой грани не слишком велика, а именно, не превосходит площади круга, радиус которого равен $ \sqrt{11^2-10^2}$ = $ \sqrt{21}$. В нашем многограннике 19 граней, поэтому площадь S его поверхности не превосходит 19·π·21 = 399π. Но многогранник описан около сферы радиуса 10. Отсюда площадь его поверхности больше площади поверхности этой сферы 4π·102. Итак, с одной стороны, S < 399π, с другой стороны, S > 400π. Полученное противоречие и решает задачу.
В этом (нестрогом) решении мы пропустили доказательства трёх утверждений, которые начинаются с трёх выделенных выше курсивом слов: тогда, поэтому, отсюда. Мы оставляем читателю эти простые доказательства, но хотим предупредить, что хотя третье утверждение легко доказывается для выпуклого многогранника с помощью сравнения его объёма с объёмом сферы (действительно, объём многоугольника равен $ {\frac{RS}{3}}$, где R — радиус вписанной сферы, a S — площадь его поверхности), тем не менее интуитивно ясное и правильное утверждение о том, что наш многогранник выпуклый, трудно доказать строго, так как само строгое определение многогранника весьма сложно. (Загляните, например, в книгу И. Лакатоса "Доказательства и опровержения" М., "Наука", 1967).

Второе решение. Поставим более общий вопрос: какое наименьшее число граней может иметь многогранник, описанный около сферы радиуса r и целиком лежащий в концентрической с ней сфере радиуса R > r. (Вот житейская ситуация, которая подсказала автору эту задачу: каким наименьшим числом прямолинейных взмахов ножа можно срезать верхний слой кожуры апельсина, не срезав при этом ни одного куска сердцевины? Очевидно, что после срезания всего верхнего слоя кожуры остаток будет многогранником, так как на его поверхности не будет ни одного закругленного участка, так что этот вопрос эквивалентен предыдущему.)
Мы не знаем точного ответа на этот более общий вопрос, но докажем для числа граней некоторое неравенство, которое при r = 10, R = 11 показывает, что N > 22. Тем самым мы докажем, что если в условии задачи вместо 19-гранника взять 22-гранник, то утверждение задачи по-прежнему останется справедливым.
Итак, пусть N-гранник описан около сферы радиуса r и целиком лежит внутри сферы радиуса R. Рассмотрим какую-нибудь его грань. Проходящая через неё плоскость отрезает от сферы шапочку (сегментную поверхность) высоты R - r. Ясно, что если построить шапочки для всех граней нашего многогранника, то их объединение покроет всю внешнюю сферу. Каждая из N шапочек есть сегментная поверхность высоты Rr, и, следовательно, имеет площадь 2π·R(Rr). Сумма площадей всех шапочек больше площади сферы. Поэтому N·2πR(Rr) > 4πR2, отсюда N > $ {\frac{2R}{R-r}}$, в частности, при R = 11, r = 10 получаем N > 22.
Интересно, что по любому набору шапочек, целиком покрывающих внешнюю сферу, можно построить многогранник, описанный около внутренней сферы. (Докажите!) Поэтому наш вопрос про минимальное число граней полностью эквивалентен следующему вопросу. Каково минимальное число N = N(h) шапочек высоты h, целиком покрывающих сферу радиуса 1? (В исходной задаче h = $ {\frac{1}{11}}$.) Очевидно, что N(h) > $ {\frac{2}{h}}$, но это неравенство отражает просто тот факт, что сумма площадей шапочек больше площади сферы, в то время как интуитивно ясно, что при h < 1 шапочки должны довольно сильно перекрываться. И действительно, можно доказать, что при достаточно малых h N(h) > 1, 2$ {\frac{2}{h}}$. Попробуйте сами доказать, например, что при h < 1

N(h) > 1, 001$\displaystyle {\frac{2}{h}}$.

(С решениями этой задачи и других похожих задач можно познакомиться по книге Л. Фейш Тота. "Расположение на плоскости, на сфере и в пространстве". М., Физматгиз, 1958).

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1970
выпуск
Номер 7
Задача
Номер М35
олимпиада
Название Московская математическая олимпиада
год
Номер 33
Год 1970
вариант
Класс 10
Тур 2
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .