Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$.

Вниз   Решение


У многочленов Р(х) и Q(х) – один и тот же набор целых коэффициентов (их порядок – различен).
Докажите, что разность  Р(2015) – Q(2015)  кратна 1007.

ВверхВниз   Решение


Две равные окружности касаются друг друга. Постройте такую трапецию, что каждая из окружностей касается трёх её сторон, а центры окружностей лежат на диагоналях трапеции.

ВверхВниз   Решение


В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.

ВверхВниз   Решение


Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Докажите, что периметр треугольника DEF в два раза больше стороны BC.

ВверхВниз   Решение


Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.

ВверхВниз   Решение


Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. ( Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника.)

ВверхВниз   Решение


Числовая последовательность {xn} такова, что для каждого  n > 1  выполняется условие:  xn+1 = |xn| – xn–1.
Докажите, что последовательность периодическая с периодом 9.

ВверхВниз   Решение


Четырёхугольная пирамида SABCD вписана в сферу. Основание этой пирамиды – прямоугольник ABCD . Известно, что AS = 7 , BS = 2 , CS =6 , SAD = SBD = SCD . Найдите ребро DS .

Вверх   Решение

Задача 87380
Темы:    [ Теорема Пифагора в пространстве ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Четырёхугольная пирамида SABCD вписана в сферу. Основание этой пирамиды – прямоугольник ABCD . Известно, что AS = 7 , BS = 2 , CS =6 , SAD = SBD = SCD . Найдите ребро DS .

Ответ

9. Пусть ABCD – прямоугольник, S – произвольная точка вне плоскости ABCD . Докажем, что

SA2 + SC2 = SB2 + SD2.

Обозначим через O точку пересечения диагоналей прямоугольника ABCD . Тогда SO – медиана треугольников ASC и BSD , поэтому
SO2 = (2SA2 + 2SC2 - AC2), SO2 = (2SB2 + 2SD2 - BD2),

а т.к. AC = BD (как диагонали прямоугольника), то из полученных равенств следует, что SA2 + SC2 = SB2 + SD2 . Если AS = 7 , BS = 2 и CS = 6 , то
DS2 = AS2 + CS2 - BS2 = 49 + 36 - 4 = 81.

Следовательно, DS = 9 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7874

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .