Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Внутри параллелограмма ABCD взята такая точка P, что  ∠PDA = ∠PBA.  Пусть Ω – вневписанная окружность треугольника PAB, лежащая против вершины A, а ω – вписанная окружность треугольника PCD. Докажите, что одна из общих касательных к Ω и ω параллельна AD.

Вниз   Решение


Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?

ВверхВниз   Решение


В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что  M ≥ N.

ВверхВниз   Решение


Автор: Дидин М.

При каком наименьшем k среди любых трёх ненулевых действительных чисел можно выбрать такие два числа a и b, что  |ab| ≤ k  или  |1/a1/b| ≤ k?

ВверхВниз   Решение


Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны.

ВверхВниз   Решение


Что больше
  а) 2300 или 3200?
  б) 240 или 328?
  в) 544 или 453?

ВверхВниз   Решение


В треугольнике ABC точки A1, B1 и C1 – середины сторон BC, CA и AB соответственно. Точки B2 и C2 – середины отрезков BA1 и CA1 соответственно. Точка B3 симметрична C1 относительно B, а точка C3 симметрична B1 относительно C. Докажите, что одна из точек пересечения описанных окружностей треугольников BB2B3 и CC2C3 лежит на описанной окружности треугольника ABC.

ВверхВниз   Решение


К натуральному числу  a > 1  приписали это же число и получили число b, кратное a². Найдите все возможные значения числа  b/a².

ВверхВниз   Решение


а) Мальвина разбила каждую грань куба 2×2×2 на единичные квадраты и велела Буратино в некоторых квадратах написать крестики, а в остальных нолики так, чтобы каждый квадрат граничил по сторонам с двумя крестиками и двумя ноликами. На рисунке показано, как Буратино выполнил задание (видно только три грани). Докажите, что Буратино ошибся.

б) Помогите Буратино выполнить задание правильно. Достаточно описать хотя бы одну верную расстановку.

ВверхВниз   Решение


Дан картонный прямоугольник со сторонами a см и b см, где  b/2 < a < b.
Докажите, что его можно разрезать на три куска, из которых складывается квадрат.

ВверхВниз   Решение


Пусть O – центр описанной окружности треугольника ABC. На стороне BC нашлись точки X и Y такие, что AX=BX и AY=CY. Докажите, что окружность, описанная около треугольника AXY, проходит через центры описанных окружностей треугольников AOB и AOC.

ВверхВниз   Решение


Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

ВверхВниз   Решение


Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.

Вверх   Решение

Задача 98559
Темы:    [ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.


Решение

Обозначим через α, β, γ и δ вписанные углы, опирающиеся соответственно на дуги NK, KL, LM и MN. Ясно, что  α + β + γ + δ = 180°.
BLS = ∠BLN = α + β  (BLN – угол между хордой и касательной). Аналогично  ∠BKS = β + γ,  ∠DMS = α + δ,  ∠DNS = γ + δ.  Отсюда видно, что сумма этих четырёх углов равна  2(α + β + γ + δ) = 360°.  Поскольку четырёхугольник SKBL вписанный,  ∠BLS + ∠BKS = 180°.  Поэтому и
DMS + ∠DNS = 180°,  то есть четырёхугольник SNDM вписанный.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2001/2002
Номер 23
вариант
Вариант весенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .