ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 64364  (#11.6)

Тема:   [ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Автор: Храбров А.

Положительные числа a, b, c и d удовлетворяют условию   2(a + b + c + d) ≥ abcd.   Докажите, что  a² + b² + c² + d² ≥ abcd.

Прислать комментарий     Решение

Задача 64365  (#11.7)

Темы:   [ Взвешивания ]
[ Системы счисления (прочее) ]
Сложность: 4-
Классы: 10,11

Глава Монетного двора хочет выпустить монеты 12 номиналов (каждый – в натуральное число рублей) так, чтобы любую сумму от 1 до 6543 рублей можно было заплатить без сдачи, используя не более 8 монет. Сможет ли он это сделать?
(При уплате суммы можно использовать несколько монет одного номинала.)

Прислать комментарий     Решение

Задача 64366  (#11.8)

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Симметрия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 10,11

Автор: Ильясов С.

В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .