ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66276  (#1)

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 6,7,8

Саша и Илья должны были пробежать 600 метров. Но Саша первую половину времени бежал, а вторую – шёл. А Илья первую половину дистанции бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч?
Прислать комментарий     Решение


Задача 66277  (#2)

Тема:   [ Разные задачи на разрезания ]
Сложность: 3+
Классы: 6,7,8

Разрежьте фигуру ниже на четыре части одинакового периметра так, чтобы среди этих частей не было равных.

Прислать комментарий     Решение

Задача 66278  (#3)

Темы:   [ Математическая логика (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

Состоялся матч по футболу 10 на 10 игроков между командой лжецов (которые всегда лгут) и командой правдолюбов (которые всегда говорят правду). После матча каждого игрока спросили: "Сколько голов ты забил?" Некоторые участники матча ответили "один", Миша сказал "два", некоторые ответили "три", а остальные сказали "пять". Лжёт ли Миша, если правдолюбы победили со счётом  20 : 17?

Прислать комментарий     Решение

Задача 66279  (#4)

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 6,7,8

Автор: Шноль Д.Э.

В семье Бесфамильных принято подсчитывать возраст семьи, то есть сумму возрастов (число полных лет) папы, мамы и всех детей. 31 декабря Бесфамильные празднуют день рождения своей семьи. В год, когда родился младший ребёнок Вася, семье был 101 год. Через несколько лет Бесфамильные праздновали свое 150-летие. Сколько детей в семье Бесфамильных?

Прислать комментарий     Решение

Задача 66280  (#5)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .