ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На плоскости дано n точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все n точек можно накрыть кругом радиуса 1.

Вниз   Решение


По заданному ненулевому x значение x8 можно найти за три арифметических действия: x2 = x · x, x4 = x2 · x2, x8 = x4 · x4, а x15 за пять действий: первые три — те же самые, затем x8 · x8 = x16 и x16 : x = x16. Докажите, что

а) x16 можно найти за 12 действий (умножений и делений);

б) для любого натурального n возвести x в n-ю степень можно не более чем за 1 + 1,5 · log2n действий.

ВверхВниз   Решение


Найдите геометрическое место центров окружностей, касающихся данной окружности в данной на ней точке.

ВверхВниз   Решение


Найдите геометрическое место центров окружностей данного радиуса, касающихся данной окружности.

ВверхВниз   Решение


Диагонали AC и CE правильного шестиугольника ABCDEF разделены точками M и N так, что  AM : AC = CN : CE = $ \lambda$. Найдите $ \lambda$, если известно, что точки B, M и N лежат на одной прямой.

ВверхВниз   Решение


Коля и его сестра Маша пошли в гости. Пройдя четверть пути, Коля вспомнил, что они забыли дома подарок и повернул обратно, а Маша пошла дальше. Маша пришла в гости через 20 минут после выхода из дома. На сколько минут позже пришёл в гости Коля, если известно, что они все время шли с одинаковыми скоростями?

ВверхВниз   Решение


Пусть I — центр вписанной окружности треугольника ABC, N — основание биссектрисы угла B. Касательная к описанной окружности треугольника AIN в вершине A и касательная к описанной окружности треугольника CIN в вершине C пересекаются в точке D. Докажите, что прямые AC и DI перпендикулярны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66774  (#6 [8-9 кл])

Темы:   [ Вписанные четырехугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Центральная симметрия (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный.
Прислать комментарий     Решение


Задача 66775  (#7 [8-9 кл])

Темы:   [ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Бибиков П.

В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 66776  (#8 [8-9 кл])

Темы:   [ Параллелограммы (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Mahdi Etesami Fard

Окружность $\omega_1$ проходит через вершину $A$ параллелограмма $ABCD$ и касается лучей $CB$, $CD$. Окружность $\omega_2$ касается лучей $AB$, $AD$ и касается внешним образом $\omega_1$ в точке $T$. Докажите, что $T$ лежит на диагонали $AC$.
Прислать комментарий     Решение


Задача 66777  (#9 [8-9 кл])

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ $A_M$ – середина стороны $BC$, $A_H$ – основание высоты, опущенной на эту сторону. Аналогично определяются точки $B_M$, $B_H$, $C_M$, $C_H$. Докажите, что одно из отношений $A_MA_H:A_HA$, $B_MB_H:B_HB$, $C_MC_H:C_HC$ равно сумме двух других.
Прислать комментарий     Решение


Задача 66778  (#10 [8-9 кл])

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Тригуб А.

В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .