ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На плоскости дано n точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все n точек можно накрыть кругом радиуса 1.

Вниз   Решение


По заданному ненулевому x значение x8 можно найти за три арифметических действия: x2 = x · x, x4 = x2 · x2, x8 = x4 · x4, а x15 за пять действий: первые три — те же самые, затем x8 · x8 = x16 и x16 : x = x16. Докажите, что

а) x16 можно найти за 12 действий (умножений и делений);

б) для любого натурального n возвести x в n-ю степень можно не более чем за 1 + 1,5 · log2n действий.

ВверхВниз   Решение


Найдите геометрическое место центров окружностей, касающихся данной окружности в данной на ней точке.

ВверхВниз   Решение


Найдите геометрическое место центров окружностей данного радиуса, касающихся данной окружности.

ВверхВниз   Решение


Диагонали AC и CE правильного шестиугольника ABCDEF разделены точками M и N так, что  AM : AC = CN : CE = $ \lambda$. Найдите $ \lambda$, если известно, что точки B, M и N лежат на одной прямой.

ВверхВниз   Решение


Коля и его сестра Маша пошли в гости. Пройдя четверть пути, Коля вспомнил, что они забыли дома подарок и повернул обратно, а Маша пошла дальше. Маша пришла в гости через 20 минут после выхода из дома. На сколько минут позже пришёл в гости Коля, если известно, что они все время шли с одинаковыми скоростями?

Вверх   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 127]      



Задача 110089

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Итерации ]
[ Соображения непрерывности ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен нечётной степени. Докажите, что уравнение  P(P(x)) = 0  имеет не меньше различных действительных корней, чем уравнение  P(x) = 0.

Прислать комментарий     Решение

Задача 115353

Темы:   [ Неравенства для углов треугольника ]
[ Доказательство от противного ]
[ Монотонность и ограниченность ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 9,10,11

Углы треугольника α, β, γ удовлетворяют неравенствам sin α > cos β, sin β > cos γ, sin γ > cos α . Докажите, что треугольник остроугольный.
Прислать комментарий     Решение


Задача 115711

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Геометрия на клетчатой бумаге ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10,11

В саду растут яблони и груши — всего 7 деревьев (деревья обоих видов присутствуют). Ближе всех к каждому дереву растет дерево того же вида и дальше всех от каждого дерева растет дерево того же вида. Приведите пример того, как могут располагаться деревья в саду.
Комментарий. Имелось в виду, что если ближайших к данному дереву (или самых дальних от данного дерева) несколько, то условие должно выполнятся для каждого из них.
Прислать комментарий     Решение


Задача 65410

Темы:   [ Площадь и ортогональная проекция ]
[ Параллелограмм Вариньона ]
[ Малые шевеления ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

Прислать комментарий     Решение

Задача 111689

Темы:   [ Разрезания на параллелограммы ]
[ Перегруппировка площадей ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8,9,10,11

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .