ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сонкин М.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 108146

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

На медиане CD треугольника ABC отмечена точка E. Окружность S1, проходящая через точку E и касающаяся прямой AB в точке A, пересекает сторону AC в точке M. Окружность S2, проходящая через точку E и касающаяся прямой AB в точке B, пересекает сторону BC в точке N. Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.

Прислать комментарий     Решение

Задача 108154

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Треугольник ABC вписан в окружность S. Пусть A0 – середина дуги BC окружности S, не содержащей точку A, C0 – середина дуги окружности S, не содержащей точку C. Окружность S1 с центром A0 касается BC, окружность S2 с центром C0 касается AB. Докажите, что центр I вписанной в треугольник ABC окружности лежит на одной из общих внешних касательных к окружностям S1 и S2.

Прислать комментарий     Решение

Задача 108173

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружность, вписанная в треугольник ABC касается его сторон AB , BC и CA в точках M , N и K соответственно. Прямая, проходящая через вершину A и параллельная NK , пересекает прямую MN в точке D . Прямая, проходящая через вершину A и параллельная MN , пересекает прямую NK в точке E . Докажите, что прямая DE содержит среднюю линию треугольника ABC .
Прислать комментарий     Решение


Задача 108174

Темы:   [ Вспомогательные равные треугольники ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O, вписанная в треугольник ABC, касается сторон AC, AB и BC в точках K, M и N соответственно. Медиана BB1 треугольника пересекает MN в точке D. Докажите, что точка O лежит на прямой DK.

Прислать комментарий     Решение

Задача 108178

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ломаные ]
Сложность: 4
Классы: 9,10,11

Автор: Сонкин М.

Дан треугольник ABC. Точка B1 делит пополам длину ломаной ABC (составленной из отрезков AB и BC), точка C1 делит пополам длину ломаной ACB, точка A1 делит пополам длину ломаной CAB. Через точки A1, B1 и C1 проводятся прямые lA, lB и lC, параллельные биссектрисам углов BAC, ABC и ACB соответственно. Докажите, что прямые lA, lB и lC пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .