Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

В треугольнике ABC биссектриса AK перпендикулярна медиане CL.
Докажите, что в треугольнике BKL также одна из биссектрис перпендикулярна одной из медиан.

Вниз   Решение


В прямоугольном секторе AOB проведена хорда AB и в образовавшийся сегмент вписан квадрат. Найдите отношение стороны квадрата к радиусу окружности, которая касается хорды AB, дуги AB и стороны квадрата, перпендикулярной хорде AB.

ВверхВниз   Решение


В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

ВверхВниз   Решение


Пусть n – натуральное число. На  2n + 1  карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении  *x2n + *x2n–1 + ... *x + *  так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?

ВверхВниз   Решение


Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число  1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.

ВверхВниз   Решение


В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?

ВверхВниз   Решение


В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?

ВверхВниз   Решение


Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что  KS || AC  и  LT || AB.  Докажите, что точки P, Q, S и T лежат на одной окружности.

ВверхВниз   Решение


На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?

ВверхВниз   Решение


Дан квадрат со стороной 10. Разрежьте его на 100 равных четырёхугольников, каждый из которых вписан в окружность диаметра  

ВверхВниз   Решение


На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

ВверхВниз   Решение


Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

ВверхВниз   Решение


Ученик за одну неделю получил 17 оценок (каждая из них – 2, 3, 4 или 5). Среднее арифметическое этих 17 оценок – целое число.
Докажите, что какую-то оценку он получил не более двух раз.

ВверхВниз   Решение


На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что  AB = AK.  Отрезок AK пересекает биссектрису CL в её середине.
Найдите острые углы треугольника ABC.

ВверхВниз   Решение


В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?

ВверхВниз   Решение


Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.

ВверхВниз   Решение


Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.

ВверхВниз   Решение


В большой квадратный зал привезли два квадратных ковра, сторона одного ковра вдвое больше стороны другого. Когда их положили в противоположные углы зала, они в два слоя накрыли 4 м², а когда их положили в соседние углы, то 14 м². Каковы размеры зала?

ВверхВниз   Решение


Обязательно ли среди двадцати пяти "медных" монет (т.е. монет достоинством 1, 2, 3, 5 коп.) найдётся семь монет одинакового достоинства?

ВверхВниз   Решение


Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Вверх   Решение

Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 177]      



Задача 64626

Темы:   [ Средние величины ]
[ Делимость чисел. Общие свойства ]
[ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Ученик за одну неделю получил 17 оценок (каждая из них – 2, 3, 4 или 5). Среднее арифметическое этих 17 оценок – целое число.
Докажите, что какую-то оценку он получил не более двух раз.

Прислать комментарий     Решение

Задача 64634

Темы:   [ Многоугольники (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.

Прислать комментарий     Решение

Задача 64812

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Проекция на прямую (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Прислать комментарий     Решение

Задача 65070

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что  AB = AK.  Отрезок AK пересекает биссектрису CL в её середине.
Найдите острые углы треугольника ABC.

Прислать комментарий     Решение

Задача 65697

Темы:   [ Теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .