ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC биссектриса AK перпендикулярна медиане CL. В прямоугольном секторе AOB проведена хорда AB и в образовавшийся сегмент вписан квадрат. Найдите отношение стороны квадрата к радиусу окружности, которая касается хорды AB, дуги AB и стороны квадрата, перпендикулярной хорде AB. В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз? Пусть n – натуральное число. На 2n + 1 карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении *x2n + *x2n–1 + ... *x + * так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 177]
Дан квадрат со стороной 10. Разрежьте его на 100 равных четырёхугольников, каждый из которых вписан в окружность диаметра
Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что KS || AC и LT || AB. Докажите, что точки P, Q, S и T лежат на одной окружности.
Пусть n – натуральное число. На 2n + 1 карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении *x2n + *x2n–1 + ... *x + * так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?
На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 177]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке