Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
  а) Докажите, что при  n = 98  первый всегда может выиграть.
  б) При каком наибольшем n первый всегда может выиграть?

Вниз   Решение


Среди 20 школьников состоялся турнир по теннису. Каждый участник проводил каждый день по одной встрече; в итоге за 19 дней каждый сыграл ровно по одному разу со всеми остальными. Теннисный корт в школе один, поэтому матчи шли по очереди. Сразу после своего первого выигрыша в турнире участник получал фирменную майку. Ничьих в теннисе не бывает. Петя стал одиннадцатым участником, получившим майку, а Вася – пятнадцатым. Петя получил свою майку в одиннадцатый день турнира. А в какой день получил майку Вася?

ВверхВниз   Решение


Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника.
Верно ли, что четырёхугольник – ромб?

ВверхВниз   Решение


В остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника.

ВверхВниз   Решение


Дан остроугольный треугольник ABC.
Найдите на сторонах BC, CA, AB такие точки A', B', C', чтобы наибольшая сторона треугольника A'B'C' была минимальна.

ВверхВниз   Решение


Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны?

ВверхВниз   Решение


Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

ВверхВниз   Решение


a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.

б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?

ВверхВниз   Решение


Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

ВверхВниз   Решение


В стране несколько городов, некоторые пары городов соединены дорогами, причём между каждыми двумя городами существует единственный несамопересекающийся путь по дорогам. Известно, что в стране ровно 100 городов, из которых выходит по одной дороге. Докажите, что можно построить 50 новых дорог так, что после этого даже при закрытии любой дороги можно будет из каждого города попасть в любой другой.

ВверхВниз   Решение


В турнире по теннису (где не бывает ничьих) участвовало более 4 спортсменов. Каждый игровой день каждый теннисист принимал участие ровно в одной игре. К завершению турнира каждый сыграл с каждым в точности один раз. Назовём игрока упорным, если он выиграл хотя бы один матч и после первой своей победы ни разу не проигрывал. Остальных игроков назовём неупорными. Верно ли, что игровых дней, когда была встреча между неупорными игроками, больше половины?

ВверхВниз   Решение


Внутри прямоугольного листа бумаги вырезали n прямоугольных дыр со сторонами, параллельными краям листа. На какое наименьшее число прямоугольных частей можно гарантированно разрезать этот дырявый лист? (Дыры не перекрываются и не соприкасаются.)

ВверхВниз   Решение


В неравнобедренном треугольнике ABC высота из вершины A, биссектриса из вершины B и медиана из вершины C пересекаются в одной точке K.
  а) Какая из сторон треугольника средняя по величине?
  б) Какой из отрезков AK, BK, CK средний по величине?

Вверх   Решение

Все задачи автора

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 187]      



Задача 116371

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разрезания (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.
Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?

Прислать комментарий     Решение

Задача 66780

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9,10,11

Пусть $A_1A_2A_3$ – остроугольный треугольник, радиус описанной окружности равен $1$, $O$ – ее центр. Из вершин $A_i$ проведены чевианы через $O$ до пересечения с противолежащими сторонами в точках $B_i$ соответственно $(i=1, 2, 3)$.

(а) Из трех отрезков $B_iO$ выберем самый длинный. Какова его наименьшая возможная длина?

(б) Из трех отрезков $B_iO$ выберем самый короткий. Какова его наибольшая возможная длина?

Прислать комментарий     Решение

Задача 64478

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Симметрия относительно плоскости ]
[ Поворот и винтовое движение ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Выпуклые многогранники A и B не имеют общих точек. Многогранник A имеет ровно 2012 плоскостей симметрии. Каково наибольшее возможное количество плоскостей симметрии у фигуры, состоящей из A и B, если B имеет
  а) 2012,
  б) 2013 плоскостей симметрии?
  в) Каков будет ответ в пункте б), если плоскости симметрии заменить на оси симметрии?

Прислать комментарий     Решение

Задача 64867

Темы:   [ Вписанные и описанные окружности ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 8,9,10

В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата.

Прислать комментарий     Решение

Задача 64878

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Против большей стороны лежит больший угол ]
[ Неравенства для элементов треугольника (прочее) ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 9,10,11

В неравнобедренном треугольнике ABC высота из вершины A, биссектриса из вершины B и медиана из вершины C пересекаются в одной точке K.
  а) Какая из сторон треугольника средняя по величине?
  б) Какой из отрезков AK, BK, CK средний по величине?

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .