ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов. Среди 20 школьников состоялся турнир по теннису. Каждый участник проводил каждый день по одной встрече; в итоге за 19 дней каждый сыграл ровно по одному разу со всеми остальными. Теннисный корт в школе один, поэтому матчи шли по очереди. Сразу после своего первого выигрыша в турнире участник получал фирменную майку. Ничьих в теннисе не бывает. Петя стал одиннадцатым участником, получившим майку, а Вася – пятнадцатым. Петя получил свою майку в одиннадцатый день турнира. А в какой день получил майку Вася? Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника. В остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника. Дан остроугольный треугольник ABC. Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны? Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали? a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны. б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа? Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру. В стране несколько городов, некоторые пары городов соединены дорогами, причём между каждыми двумя городами существует единственный несамопересекающийся путь по дорогам. Известно, что в стране ровно 100 городов, из которых выходит по одной дороге. Докажите, что можно построить 50 новых дорог так, что после этого даже при закрытии любой дороги можно будет из каждого города попасть в любой другой. В турнире по теннису (где не бывает ничьих) участвовало более 4 спортсменов. Каждый игровой день каждый теннисист принимал участие ровно в одной игре. К завершению турнира каждый сыграл с каждым в точности один раз. Назовём игрока упорным, если он выиграл хотя бы один матч и после первой своей победы ни разу не проигрывал. Остальных игроков назовём неупорными. Верно ли, что игровых дней, когда была встреча между неупорными игроками, больше половины? Внутри прямоугольного листа бумаги вырезали n прямоугольных дыр со сторонами, параллельными краям листа. На какое наименьшее число прямоугольных частей можно гарантированно разрезать этот дырявый лист? (Дыры не перекрываются и не соприкасаются.) В неравнобедренном треугольнике ABC высота из вершины A, биссектриса из вершины B и медиана из вершины C пересекаются в одной точке K. |
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 187]
На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.
Пусть $A_1A_2A_3$ – остроугольный треугольник, радиус описанной окружности равен $1$, $O$ – ее центр. Из вершин $A_i$ проведены чевианы через $O$ до пересечения с противолежащими сторонами в точках $B_i$ соответственно $(i=1, 2, 3)$. (а) Из трех отрезков $B_iO$ выберем самый длинный. Какова его наименьшая возможная длина? (б) Из трех отрезков $B_iO$ выберем самый короткий. Какова его наибольшая возможная длина?
Выпуклые многогранники A и B не имеют общих точек. Многогранник A имеет ровно 2012 плоскостей симметрии. Каково наибольшее возможное количество плоскостей симметрии у фигуры, состоящей из A и B, если B имеет
В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата.
В неравнобедренном треугольнике ABC высота из вершины A, биссектриса из вершины B и медиана из вершины C пересекаются в одной точке K.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 187]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке