ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В 25 коробках лежат шарики нескольких цветов. Известно, что при любом k (1 ≤ k ≤ 25) в любых k коробках лежат шарики ровно k + 1 различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках. В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин. Постройте треугольник $ABC$ по вершине $A$, центру описанной окружности $O$ и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах $AB$ и $AC$ равные отрезки от вершины $A$. На плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности. Из клетчатого прямоугольника 9×9 вырезали 16 клеток, у которых номера горизонталей и вертикалей чётные. Разрежьте оставшуюся фигуру на несколько клетчатых прямоугольников так, чтобы среди них было как можно меньше квадратиков 1×1. В лаборатории на полке стоят 120 внешне неразличимых пробирок, в 118 из которых находится нейтральное вещество, в одной – яд и в одной – противоядие. Пробирки случайно перемешались, и нужно найти пробирку с ядом и пробирку с противоядием. Для этого можно воспользоваться услугами внешней тестирующей лаборатории, в которую одновременно отправляют несколько смесей жидкостей из любого числа пробирок (по одной капле из пробирки), и для каждой смеси лаборатория сообщит результат: $+1$, если в смеси есть яд и нет противоядия; $-1$, если в смеси есть противоядие, но нет яда; 0 в остальных случаях. Можно ли, подготовив 19 таких смесей и послав их в лабораторию единой посылкой, по сообщенным результатам гарантированно определить, в какой пробирке яд, а в какой противоядие? На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется неудачной, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить? Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны. Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80. a и b – натуральные числа. Известно, что a² + b² делится на ab. Докажите, что a = b. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 181]
На столе лежало 100 яблок, 99 апельсинов и груши. К столу подходили ребята. Первый взял яблоко, второй – грушу, третий – апельсин, следующий опять яблоко, следующий за ним – грушу, за ним – апельсин. Далее ребята разбирали фрукты в таком же порядке до тех пор, пока стол не опустел. Сколько могло быть груш?
Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?
a и b – натуральные числа. Известно, что a² + b² делится на ab. Докажите, что a = b.
По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 181]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке