Processing math: 52%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Доказать, что связный граф можно обойти, проходя по каждому ребру дважды.

Вниз   Решение


В каждый угол треугольника ABC вписана окружность, касающаяся описанной окружности. Пусть A1, B1 и C1 — точки касания этих окружностей с описанной окружностью. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.

ВверхВниз   Решение


На сторонах AB и BC правильного треугольника ABC взяты точки M и N так, что MN| AC, E — середина отрезка AN, D — центр треугольника BMN. Найдите величины углов треугольника CDE.

ВверхВниз   Решение


а) Докажите, что любой многоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.
б) Даны два многоугольника равной площади. Докажите, что первый многоугольник можно разрезать на части и сложить из них второй.

Вверх   Решение

Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 187]      



Задача 67152

Тема:   [ Свойства модуля. Неравенство треугольника ]
Сложность: 3
Классы: 7,8,9

Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)
Прислать комментарий     Решение


Задача 67399

Темы:   [ Свойства коэффициентов многочлена ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10,11

Барону Мюнхгаузену сообщили о многочлене P(x)=anxn++a1x+a0 лишь то, что многочлен P(x)+P(x) имеет ровно 45 различных действительных корней. Барон, не зная даже, чему равно n, утверждает, что может определить один из коэффициентов an, , a1, a0 (готов указать его номер и значение). Не ошибается ли барон?
Прислать комментарий     Решение


Задача 67418

Темы:   [ Арифметические действия. Числовые тождества ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на 17 частей. Могли ли все части оказаться равными по массе? (Объединять части нельзя.)
Прислать комментарий     Решение


Задача 67425

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на N частей. При каждом ли N все части могли получиться равными по массе? (Объединять части нельзя.)
Прислать комментарий     Решение


Задача 67430

Темы:   [ Уравнения в целых числах ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10,11

Найдите все пары натуральных чисел m и n, для которых m!! = n!. (Двойной факториал m!! — это произведение всех натуральных чисел, не превосходящих m и имеющих ту же чётность, что m. Например, 5!! = 15, 6!! = 48).
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .