Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 316]
|
|
Сложность: 4- Классы: 10,11
|
Из N прямоугольных плиток (возможно, неодинаковых) составлен прямоугольник с неравными сторонами. Докажите, что можно разрезать каждую плитку на две части так, чтобы из N частей можно было сложить квадрат, а из оставшихся N частей – прямоугольник.
|
|
Сложность: 4- Классы: 10,11
|
Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.
|
|
Сложность: 4- Классы: 6,7,8
|
Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?
Каждая грань куба 6×6×6 разбита на клетки 1×1. Куб оклеили квадратами 2×2 так, что каждый квадрат накрывает ровно четыре клетки, никакие квадраты не совпадают и каждая клетка накрыта одинаковым числом квадратов. Какое наибольшее значение может принимать это одинаковое число? (Квадрат можно перегибать через ребро.)
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 316]