Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 316]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Пусть A и B – два прямоугольника. Из прямоугольников, равных A, сложили прямоугольник, подобный B.
Докажите, что из прямоугольников, равных B, можно сложить прямоугольник, подобный A.
|
|
Сложность: 4+ Классы: 10,11
|
С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов.
|
|
Сложность: 4+ Классы: 6,7,8
|
Решил шах проверить придворного мудреца. «Вот тебе шесть шкатулок, — сказал шах, — с надписями 1, 2, 3, 4, 5, 6 на крышках. В каждой шкатулке золотая монета, которая весит ровно столько граммов, сколько написано. Ты расставляешь шкатулки как угодно в клетках прямоугольника 2×3. Потом я втайне от тебя меняю местами монеты в каких-то двух шкатулках, стоящих в соседних по стороне клетках (или ничего не меняю). Затем ты укажешь на несколько шкатулок, а я назову тебе общий вес монет в них. Если после этого правильно определишь, какие монеты я переложил, останешься при дворе. А не сможешь — прогоню вон!»
Как может действовать мудрец, чтобы выдержать испытание?
|
|
Сложность: 4+ Классы: 8,9,10
|
Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
а) Докажите, что при n = 98 первый всегда может выиграть.
б) При каком наибольшем n первый всегда может выиграть?
|
|
Сложность: 4+ Классы: 9,10
|
Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили
на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на
каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?
Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 316]