ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 196]      



Задача 116170

Темы:   [ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.

Прислать комментарий     Решение

Задача 116171

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема синусов ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 8,9

Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности.

Прислать комментарий     Решение

Задача 116176

Темы:   [ Четырехугольная пирамида ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Птолемея ]
[ Стереографическая проекция ]
Сложность: 4
Классы: 10,11

B основании четырёхугольной пирамиды SABCD лежит четырёхугольник ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.

Прислать комментарий     Решение

Задача 116177

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема синусов ]
[ Гомотетичные многоугольники ]
Сложность: 4
Классы: 9,10,11

Дана окружность и точка P внутри неё. Два произвольных перпендикулярных луча с началом в точке P пересекают окружность в точках A и B. Tочка X является проекцией точки P на прямую AB, Y – точка пересечения касательных к окружности, проведённых через точки A и B. Докажите, что все прямые XY проходят через одну и ту же точку.

Прислать комментарий     Решение

Задача 116181

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Гомотетия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 9,10

В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 196]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .