Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 196]
Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых
AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.
Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и
Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности.
|
|
Сложность: 4 Классы: 10,11
|
B основании четырёхугольной пирамиды SABCD лежит четырёхугольник
ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.
|
|
Сложность: 4 Классы: 9,10,11
|
Дана окружность и точка P внутри неё. Два произвольных перпендикулярных
луча с началом в точке P пересекают окружность в точках A и B. Tочка X является проекцией точки P на прямую AB, Y – точка пересечения касательных к окружности, проведённых через точки A и B. Докажите, что все прямые XY проходят через одну и ту же точку.
В треугольнике ABC M – точка пересечения медиан,
O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами
BC, CA, AB соответственно. Докажите, что, если CA' = AB,
то прямые OM и AB перпендикулярны.
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 196]