Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Протасов В.Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Шифр кодового замка является двузначным числом. Буратино забыл код, но помнит, что сумма цифр этого числа, сложенная с их произведением, равна самому числу. Напишите все возможные варианты кода, чтобы Буратино смог быстрее открыть замок.

Вниз   Решение


В клетчатом прямоугольнике m×n каждая клетка может быть либо живой, либо мёртвой. Каждую минуту одновременно все живые клетки умирают, а те мёртвые, у которых было нечётное число живых соседей (по стороне), оживают.
Укажите все пары  (m, n),  для которых найдётся такая начальная расстановка живых и мёртвых клеток, что жизнь в прямоугольнике будет существовать вечно (то есть в каждый момент времени хотя бы одна клетка будет живой)?

ВверхВниз   Решение


Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы x и y, что для любой точки Ai выполняется равенство     где k и l – некоторые целые числа.

ВверхВниз   Решение


Автор: Жуков Г.

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?

ВверхВниз   Решение


Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что  BX = BY.

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


В каждой клетке квадрата 101×101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:
  1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
  2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?

ВверхВниз   Решение


Автор: Жуков Г.

Пусть C(n) – количество различных простых делителей числа n. (Например,  C(10) = 2,  C(11) = 1,  C(12) = 2.)
Конечно или бесконечно число таких пар натуральных чисел  (a, b),  что  a ≠ b  и  C(a + b) = C(a) + C(b)?

ВверхВниз   Решение


Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?

ВверхВниз   Решение


Автор: Жуков Г.

На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.
Какое наибольшее число различных может быть среди чисел на доске?

ВверхВниз   Решение


Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.

ВверхВниз   Решение


Разрежьте квадрат 6×6 клеточек на трёхклеточные уголки (см. рис.) так, чтобы никакие два уголка не образовывали прямоугольник 2×3.

ВверхВниз   Решение


Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.

Вверх   Решение

Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 64864

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M.

Прислать комментарий     Решение

Задача 115870

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9,10,11

Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.

Прислать комментарий     Решение

Задача 66801

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9,10,11

Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.
Прислать комментарий     Решение


Задача 110786

Темы:   [ Пересекающиеся окружности ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 7,8,9

Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что  BX = BY.

Прислать комментарий     Решение

Задача 110790

Темы:   [ Касающиеся окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 7,8,9

Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Докажите, что прямая, соединяющая точки касания, проходит через одну из общих точек этих окружностей.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .