Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Протасов В.Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.

Вниз   Решение


Автор: Жуков Г.

По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.

ВверхВниз   Решение


Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)

Вверх   Решение

Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 115782

Темы:   [ Вневписанные окружности ]
[ Неравенства с площадями ]
[ Вписанные и описанные окружности ]
[ Экстремальные свойства (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 8,9,10,11

В угол A, равный α, вписана окружность, касающаяся его сторон в точках B и C. Прямая, касающаяся окружности в некоторой точке M, пересекает отрезки AB и AC в точках Р и Q соответственно. При каких α может быть выполнено неравенство SPAQ < SBMC?

Прислать комментарий     Решение

Задача 115880

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Ортогональная проекция (прочее) ]
[ Решение задач при помощи аффинных преобразований ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10,11

Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем  n + 2  грани?

Прислать комментарий     Решение

Задача 66804

Тема:   [ Построения (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)
Прислать комментарий     Решение


Задача 110791

Темы:   [ Гомотетичные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Касающиеся окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4+
Классы: 9,10,11

Дана окружность, точка A на ней и точка M внутри нее. Рассматриваются хорды BC , проходящие через M . Докажите, что окружности, проходящие через середины сторон всех треугольников ABC , касаются некоторой фиксированной окружности.
Прислать комментарий     Решение


Задача 55607

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5-
Классы: 8,9

Внутри треугольника ABC с углами $ \angle$A = 50o, $ \angle$B = 60o, $ \angle$C = 70o взята точка M, причём $ \angle$AMB = 110o, $ \angle$BMC = 130o. Найдите $ \angle$MBC.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .