Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ходулев А.Б.

Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Автор: Тыщук К.

Дано натуральное число  n > 3.  Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?

Вниз   Решение


Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»?

ВверхВниз   Решение


Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.

ВверхВниз   Решение


а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это. (Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)

б) Для любых двух вершин A и B любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника из А в В и никакие две не проходят по одному ребру. Докажите это.

в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его вершин А и В существует соединяющая эти две вершины ломаная, идущая по оставшимся рёбрам. Докажите это.

г) Докажите, что в задаче б) можно выбрать три ломаные, никакие две из которых не имеют общих вершин, за исключением точек А и В.

ВверхВниз   Решение


Дан треугольник ABC и прямая l, пересекающая BC, CA и AB в точках A1, B1 и C1 соответственно. Точка A' – середина отрезка, соединяющего проекции A1 на AB и AC. Аналогично определяются точки B' и C'.
  а) Докажите, что A', B' и C' лежат на некоторой прямой l'.
  б) Докажите, что, если l проходит через центр описанной окружности треугольника ABC, то l' проходит через центр его окружности девяти точек.

ВверхВниз   Решение


Автор: Иванов К.

Действительные числа a, b, c, d, по модулю большие единицы, удовлетворяют соотношению   abc + abd + acd + bcd + a + b + c + d = 0.
Докажите, что  

ВверхВниз   Решение


Имеется натуральное число  n > 1970.  Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n.

ВверхВниз   Решение


Автор: Тоом А.Л.

Точка K лежит на стороне BC треугольника ABC.
Докажите, что соотношение  AK² = AB·AC – KB·KC  выполнено тогда и только тогда, когда  AB = AC  или  ∠BAK = ∠CAK.

ВверхВниз   Решение


Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

ВверхВниз   Решение


Автор: Тоом А.Л.

На бесконечном клетчатом листе белой бумаги n клеток закрашены в чёрный цвет. В моменты времени t = 1, 2, 3,... происходит одновременное перекрашивание всех клеток листа по следующему правилу: каждая клетка k приобретает тот цвет, который имело в предыдущий момент большинство из трёх клеток: самой клетки k и её соседей справа и сверху (если две или три из этих клеток были белыми, то k становится белой, если две или три из них были чёрными,— то чёрной).

а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки.

б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени t = n.

ВверхВниз   Решение


Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

ВверхВниз   Решение


Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие?

ВверхВниз   Решение


Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?

ВверхВниз   Решение


На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

ВверхВниз   Решение


К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)

ВверхВниз   Решение


К Ивану на день рождения пришли 2$N$ гостей. У Ивана есть $N$ чёрных и $N$ белых цилиндров. Он хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или несколько) так, чтобы в каждом хороводе было хотя бы два человека и люди в цилиндрах одного цвета не стояли в хороводе рядом. Докажите, что Иван может устроить бал ровно $(2N)!$ различными способами. (Цилиндры одного цвета неразличимы; все гости различимы.)

ВверхВниз   Решение


Задано несколько красных и несколько синих точек. Некоторые из них соединены отрезками. Назовём точку «особой», если более половины из соединённых с ней точек имеют цвет, отличный от её цвета. Если есть хотя бы одна особая точка, то выбираем любую особую точку и перекрашиваем в другой цвет. Докажите, что через конечное число шагов не останется ни одной особой точки.

ВверхВниз   Решение


Рокфеллер и Маркс играют в такую игру. Имеется  $n > 1$  городов, во всех одно и то же число жителей. Сначала у каждого жителя есть ровно одна монета (монеты одинаковы). За ход Рокфеллер выбирает по одному жителю из каждого города, а Маркс перераспределяет между ними их деньги произвольным образом с единственным условием, чтобы распределение не осталось таким, каким только что было. Рокфеллер выиграет, если в какой-то момент в каждом городе будет хотя бы один человек без денег. Докажите, что Рокфеллер может действовать так, чтобы всегда выигрывать, как бы ни играл Маркс, если в каждом городе
  а) ровно $2n$ жителей;
  б) ровно  $2n - 1$  житель.

ВверхВниз   Решение


На суде в качестве вещественного доказательства предъявлено 14 монет. Эксперт обнаружил, что семь из них — фальшивые, остальные — настоящие, причём узнал, какие именно фальшивые, а какие — настоящие. Суд же знает только, что фальшивые монеты весят одинаково, настоящие монеты весят одинаково, а фальшивые легче настоящих. Эксперт хочет тремя взвешиваниями на чашечных весах без гирь доказать суду, что все обнаруженные им фальшивые монеты действительно фальшивые, а остальные — настоящие. Сможет ли он это сделать?

ВверхВниз   Решение


Автор: Ильичев В.

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

ВверхВниз   Решение


Автор: Ильичев В.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

ВверхВниз   Решение


Сторона квадрата ABCD равна 1. На сторонах AB и AD выбраны точки P и Q, причём периметр треугольника APQ равен 2. Докажите, что $ \angle$PCQ = 45o.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 55538

Темы:   [ Вневписанные окружности ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Сторона квадрата ABCD равна 1. На сторонах AB и AD выбраны точки P и Q, причём периметр треугольника APQ равен 2. Докажите, что $ \angle$PCQ = 45o.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .