ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур? Докажите, что если многоугольник имеет четное
число осей симметрии, то он имеет центр симметрии.
Вася задумал три различные цифры, отличные от нуля. Петя записал все возможные двузначные числа, в десятичной записи которых использовались только эти цифры. Сумма записанных чисел равна 231. Найдите цифры, задуманные Васей. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 101]
Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.
Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что Докажите, что AP ≥ AI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.
Внутри окружности с центром O отмечены точки A и B так, что OA = OB.
Существуют ли такие два многочлена с целыми коэффициентами, что у каждого из них есть коэффициент, модуль которого больше 2015, но у произведения этих двух многочленов модули всех коэффициентов не превосходят 1?
На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа n + 1 и n – 1. Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.)
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке