Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Агаханов Н.Х.

Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады.

Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Найдите все такие простые числа p, что число  p² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

Вниз   Решение


Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

ВверхВниз   Решение


В пирамиде ABCD рёбра AD , BD и CD равны 5, расстояние от точки D до плоскости ABC равно 4. Найдите радиус окружности, описанной около треугольника ABC .

ВверхВниз   Решение


В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых  AL = AB  и
CN = CB.  Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.

ВверхВниз   Решение


Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

ВверхВниз   Решение


У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число.

ВверхВниз   Решение


Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

ВверхВниз   Решение


Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?

ВверхВниз   Решение


На оси Ox произвольно расположены различные точки  X1, ..., Xnn ≥ 3.  Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть  y = f1(x),  ...,  y = fm(x)  – соответствующие параболы. Докажите, что парабола  y = f1(x) + ... + fm(x)  пересекает ось Ox в двух точках.

ВверхВниз   Решение


Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

ВверхВниз   Решение


Существуют ли такие ненулевые числа a, b, c, что при любом  n > 3  можно найти многочлен вида  Pn(x) = xn + ... + ax² + bx + c,  имеющий ровно n (не обязательно различных) целых корней?

ВверхВниз   Решение


Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение  x² – S(A)x + S(B) = 0,  где S(M) – сумма чисел множества M, имело целый корень?

Вверх   Решение

Все задачи автора

Страница: << 15 16 17 18 19 20 21 [Всего задач: 105]      



Задача 110090

Темы:   [ Системы точек ]
[ Вспомогательные проекции ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Теория игр (прочее) ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 9,10,11

На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 110097

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Формулы сокращенного умножения (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 5-
Классы: 9,10,11

На оси Ox произвольно расположены различные точки  X1, ..., Xnn ≥ 3.  Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть  y = f1(x),  ...,  y = fm(x)  – соответствующие параболы. Докажите, что парабола  y = f1(x) + ... + fm(x)  пересекает ось Ox в двух точках.

Прислать комментарий     Решение

Задача 111831

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Существуют ли такие ненулевые числа a, b, c, что при любом  n > 3  можно найти многочлен вида  Pn(x) = xn + ... + ax² + bx + c,  имеющий ровно n (не обязательно различных) целых корней?

Прислать комментарий     Решение

Задача 109835

Темы:   [ Задачи с ограничениями ]
[ Квадратные уравнения. Теорема Виета ]
[ Двоичная система счисления ]
Сложность: 5+
Классы: 9,10,11

Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение  x² – S(A)x + S(B) = 0,  где S(M) – сумма чисел множества M, имело целый корень?

Прислать комментарий     Решение

Задача 111866

Темы:   [ Выпуклые многоугольники ]
[ Теория алгоритмов (прочее) ]
[ Медиана делит площадь пополам ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Неравенства с площадями ]
Сложность: 6
Классы: 9,10,11

Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .