Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Агаханов Н.Х.

Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады.

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.

Вниз   Решение


Построить треугольник по основанию, высоте и разности углов при основании.

ВверхВниз   Решение


Cерединный перпендикуляр к стороне $AC$ треугольника $ABC$ пересекает прямые $BC$, $AB$ в точках $A_{1}$ и $C_{1}$ соответственно. Точки $O$, $O_{1}$ – центры описанных окружностей треугольников $ABC$ и $A_{1}BC_{1}$ соответственно. Докажите, что $C_{1}O_1\perp AO$.

ВверхВниз   Решение


Определите вид тела, полученного в результате вращения квадрата вокруг его диагонали.

ВверхВниз   Решение


Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;   б) по 3 монеты;  в) по 4 монеты;
г) по 5 монет;   д) по 6 монет;   е) по 7 монет?
(Разрешается класть монеты одну на другую.) В тех случаях, когда это возможно, нарисуйте, как это сделать. В остальных случаях докажите, что так расположить монеты нельзя.

ВверхВниз   Решение


Найдите наибольшее значение функции y = 16x-4 sin x+8 на отрезке [-;0] .

ВверхВниз   Решение


Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

ВверхВниз   Решение


Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м?

ВверхВниз   Решение


Найдите наименьшее значение функции y = (x-7)ex-6 на отрезке [5;7] .

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер BA , BB1 , BC и плоскости A1DC1 ; б) рёбер BA , BB1 , BC и прямой DA1 .

ВверхВниз   Решение


В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.

ВверхВниз   Решение


Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются?

ВверхВниз   Решение


В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 105]      



Задача 65693

Темы:   [ Квадратный трехчлен (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 9,10,11

Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

Прислать комментарий     Решение

Задача 109525

Темы:   [ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Целые числа x, y и z таковы, что  (x – y)(y – z)(z – x) = x + y + z.  Докажите, что число  x + y + z  делится на 27.

Прислать комментарий     Решение

Задача 109927

Темы:   [ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Докажите, что числа от 1 до 16 можно записать в строку, но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел была квадратом натурального числа.
Прислать комментарий     Решение


Задача 111786

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.

Прислать комментарий     Решение

Задача 116564

Темы:   [ Четность и нечетность ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 10,11

Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .