Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 105]
|
|
Сложность: 4 Классы: 7,8,9
|
В остроугольном треугольнике расстояние от середины каждой стороны до
противоположной вершины равно сумме расстояний от неё до сторон треугольника.
Докажите, что этот треугольник – равносторонний.
|
|
Сложность: 4 Классы: 7,8,9
|
В клетчатом квадрате 101×101 каждая клетка внутреннего квадрата 99×99 покрашена в один из десяти цветов (клетки, примыкающие к границе
квадрата, не покрашены). Может ли оказаться, что в каждом квадрате 3×3 в цвет центральной клетки покрашена еще ровно одна клетка?
|
|
Сложность: 4 Классы: 10,11
|
Квадратные трёхчлены f(x) и g(x) таковы, что
f '(x)g'(x) ≥ |f(x)| + |g(x)| при всех действительных x.
Докажите, что произведение f(x)g(x) равно квадрату некоторого трёхчлена.
У двух треугольников равны наибольшие стороны и равны наименьшие углы.
Строится новый треугольник со сторонами, равными суммам соответствующих сторон
данных треугольников
(складываются наибольшие стороны двух треугольников,
средние по длине стороны и наименьшие стороны).
Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
|
|
Сложность: 4 Классы: 7,8,9
|
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу.
Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 105]